IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7754-d682609.html
   My bibliography  Save this article

Adaptive Protection Coordination Method Design of Remote Microgrid for Three-Phase Short Circuit Fault

Author

Listed:
  • Wookyu Chae

    (Smart Power Distribution Laboratory, Distribution Planning Group, KEPCO Research Institute, Daejeon 34056, Korea)

  • Jung-Hun Lee

    (Smart Power Distribution Laboratory, Distribution Planning Group, KEPCO Research Institute, Daejeon 34056, Korea)

  • Woo-Hyun Kim

    (Smart Power Distribution Laboratory, Distribution Planning Group, KEPCO Research Institute, Daejeon 34056, Korea)

  • Sungwook Hwang

    (Smart Power Distribution Laboratory, Distribution Planning Group, KEPCO Research Institute, Daejeon 34056, Korea)

  • Jun-Oh Kim

    (Korea Electric Power Corporation, Daegu 41590, Korea)

  • Jae-Eon Kim

    (School of Electrical Engineering, Chungbuk National University, Cheongju 28644, Korea)

Abstract

Generally, the fault current supplied by inverter-based renewable energy sources (IBRES) and electrical storage systems (ESS) is about 1.2 to 2 times their rated current and much lower than synchronous generators because the former acts as a current source and the latter acts as a voltage source. A conventional power system in a small island is composed of only synchronous generators and protected from short circuit faults using an overcurrent relay (OCR). However, in the remote microgrid with IBRES, ESS, and synchronous generators, the fault current varies depending on the configuration of generation sources. Namely, the fixed OCR protection method cannot protect microgrids from short circuit faults. This paper proposes an adaptive protection method to protect the microgrid from faults by actively changing the OCR setting according to the state of the generator source combination. A microgrid with ESS and a synchronous generator is modeled and simulated through PSCAD/EMTDC software to validate the proposed adaptive protection method.

Suggested Citation

  • Wookyu Chae & Jung-Hun Lee & Woo-Hyun Kim & Sungwook Hwang & Jun-Oh Kim & Jae-Eon Kim, 2021. "Adaptive Protection Coordination Method Design of Remote Microgrid for Three-Phase Short Circuit Fault," Energies, MDPI, vol. 14(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7754-:d:682609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7754/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7754/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bui, Duong Minh & Chen, Shi-Lin & Lien, Keng-Yu & Chang, Yung-Ruei & Lee, Yih-Der & Jiang, Jheng-Lun, 2017. "Investigation on transient behaviours of a uni-grounded low-voltage AC microgrid and evaluation on its available fault protection methods: Review and proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1417-1452.
    2. Dae-Geun Jin & Jong-Chan Choi & Dong-Jun Won & Hak-Ju Lee & Woo-Kyu Chae & Jung-Sung Park, 2012. "A Practical Protection Coordination Strategy Applied to Secondary and Facility Microgrids," Energies, MDPI, vol. 5(9), pages 1-18, August.
    3. Bui, Duong Minh & Chen, Shi-Lin, 2017. "Fault protection solutions appropriately proposed for ungrounded low-voltage AC microgrids: Review and proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1156-1174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengjiao Wang & Xinlao Wei & Zhihang Zhao, 2022. "Short-Circuit Fault Current Parameter Prediction Method Based on Ultra-Short-Time Data Window," Energies, MDPI, vol. 15(23), pages 1-15, November.
    2. Murillo Cobe Vargas & Oureste Elias Batista & Yongheng Yang, 2023. "Estimation Method of Short-Circuit Current Contribution of Inverter-Based Resources for Symmetrical Faults," Energies, MDPI, vol. 16(7), pages 1-27, March.
    3. Sung-Moon Choi & Byeong-Gill Han & Mi-Young Kim & Dae-Seok Rho, 2022. "Operation Algorithm for Protection Coordination Device in High-Voltage Customer with ESS for Demand Management," Energies, MDPI, vol. 15(9), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghanbari, T. & Farjah, E. & Naseri, F. & Tashakor, N. & Givi, H. & Khayam, R., 2018. "Solid-State Capacitor Switching Transient Limiter based on Kalman Filter algorithm for mitigation of capacitor bank switching transients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1069-1081.
    2. Patnaik, Bhaskar & Mishra, Manohar & Bansal, Ramesh C. & Jena, Ranjan Kumar, 2020. "AC microgrid protection – A review: Current and future prospective," Applied Energy, Elsevier, vol. 271(C).
    3. Hosseini, Seyed Amir & Abyaneh, Hossein Askarian & Sadeghi, Seyed Hossein Hesamedin & Razavi, Farzad & Nasiri, Adel, 2016. "An overview of microgrid protection methods and the factors involved," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 174-186.
    4. Yijin Li & Jianhua Lin & Geng Niu & Ming Wu & Xuteng Wei, 2021. "A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for Microgrids," Energies, MDPI, vol. 14(16), pages 1-16, August.
    5. Sergio Danilo Saldarriaga-Zuluaga & Jesús María López-Lezama & Nicolás Muñoz-Galeano, 2020. "Optimal Coordination of Overcurrent Relays in Microgrids Considering a Non-Standard Characteristic," Energies, MDPI, vol. 13(4), pages 1-18, February.
    6. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    8. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7754-:d:682609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.