IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3888-d356064.html
   My bibliography  Save this article

Utilization of By-Products and Wastes as Supplementary Cementitious Materials in Structural Mortar for Sustainable Construction

Author

Listed:
  • Shamir Sakir

    (Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia)

  • Sudharshan N. Raman

    (Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
    Department of Architecture and Built Environment, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia)

  • Md. Safiuddin

    (Angelo DelZotto School of Construction Management, George Brown College, 146 Kendal Avenue, Toronto, ON M5T 2T9, Canada
    Department of Civil Engineering, Faculty of Engineering and Architectural Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
    Department of Civil and Environmental Engineering, Faculty of Engineering, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada)

  • A. B. M. Amrul Kaish

    (Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia)

  • Azrul A. Mutalib

    (Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia)

Abstract

Rapid growth in industrial development has raised the concern of proper disposal of the by-products generated in industries. Many of them may cause serious pollution to the air, land, and water if dumped in open landfills. Agricultural and municipal wastes also cause environmental issues if not managed properly. Besides, minimizing the carbon footprint has become a priority in every industry to slow down global warming and climate change effects. The use of supplementary cementitious materials (SCMs) obtained from agricultural, industrial, municipal, and natural sources can decrease a significant amount of fossil fuel burning by reducing cement production and contribute to proper waste management. Also, SCMs can enhance desirable material properties like flowability, strength, and durability. Such materials may play a big role to meet the need of modern time for resilient construction. The effective application of SCMs in cement-based materials requires a clear understanding of their physical and chemical characteristics. Researchers studied how the flowability, strength, and durability properties of structural mortar change with the replacement of cement with different SCMs. Various experiments were conducted to examine the behavior of structural mortar in extreme conditions (e.g., high temperature). Many scholars have attempted to improve its performance with various treatment techniques. This article is an attempt to bring all the major findings of the recent relevant studies together, identify research gaps in the current state of knowledge on the utilization of SCMs in structural mortar, and give several recommendations for further study. The available results from recent studies have been reviewed, analyzed, and summarized in this article. A collection of the updated experimental findings will encourage and ease the use of various by-products and wastes as SCMs in structural mortar for sustainable construction.

Suggested Citation

  • Shamir Sakir & Sudharshan N. Raman & Md. Safiuddin & A. B. M. Amrul Kaish & Azrul A. Mutalib, 2020. "Utilization of By-Products and Wastes as Supplementary Cementitious Materials in Structural Mortar for Sustainable Construction," Sustainability, MDPI, vol. 12(9), pages 1-35, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3888-:d:356064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chiu Chuen Onn & Kim Hung Mo & Mohammed K. H. Radwan & Wen Hong Liew & Chee Guan Ng & Sumiani Yusoff, 2019. "Strength, Carbon Footprint and Cost Considerations of Mortar Blends with High Volume Ground Granulated Blast Furnace Slag," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Fořt & Jan Kočí & Robert Černý, 2021. "Environmental Efficiency Aspects of Basalt Fibers Reinforcement in Concrete Mixtures," Energies, MDPI, vol. 14(22), pages 1-13, November.
    2. Jan Fořt & Jiří Šál & Jaroslav Žák & Robert Černý, 2020. "Assessment of Wood-Based Fly Ash as Alternative Cement Replacement," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    3. Jesús M. Blanco & Yokasta García Frómeta & Maggi Madrid & Jesús Cuadrado, 2021. "Thermal Performance Assessment of Walls Made of Three Types of Sustainable Concrete Blocks by Means of FEM and Validated through an Extensive Measurement Campaign," Sustainability, MDPI, vol. 13(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Fořt & Jiří Šál & Jaroslav Žák & Robert Černý, 2020. "Assessment of Wood-Based Fly Ash as Alternative Cement Replacement," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    2. Mohammed K. H. Radwan & Chiu Chuen Onn & Kim Hung Mo & Soon Poh Yap & Ren Jie Chin & Sai Hin Lai, 2022. "Sustainable ternary cement blends with high-volume ground granulated blast furnace slag–fly ash," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4751-4785, April.
    3. Jan Pešta & Markéta Šerešová & Vladimír Kočí, 2020. "Carbon Footprint Assessment of Construction Waste Packaging Using the Package-to-Product Indicator," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    4. Alisson Mendes Rodrigues & Fabiana Pereira da Costa & Suellen Lisboa Dias Beltrão & Jucielle Veras Fernandes & Romualdo Rodrigues Menezes & Gelmires de Araújo Neves, 2021. "Development of Eco-Friendly Mortars Produced with Kaolin Processing Waste: Durability Behavior Viewpoint," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
    5. Slobodan Šupić & Vesna Bulatović & Mirjana Malešev & Vlastimir Radonjanin & Ivan Lukić, 2021. "Sustainable Masonry Mortars with Fly Ash, Blast Furnace Granulated Slag and Wheat Straw Ash," Sustainability, MDPI, vol. 13(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3888-:d:356064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.