IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7719-d681723.html
   My bibliography  Save this article

Comparative Analysis of Selected Open-Source Solutions for Traffic Balancing in Server Infrastructures Providing WWW Service

Author

Listed:
  • Paweł Dymora

    (Faculty of Electrical and Computer Engineering, Rzeszów University of Technology, 35-959 Rzeszów, Poland)

  • Mirosław Mazurek

    (Faculty of Electrical and Computer Engineering, Rzeszów University of Technology, 35-959 Rzeszów, Poland)

  • Bartosz Sudek

    (Faculty of Electrical and Computer Engineering, Rzeszów University of Technology, 35-959 Rzeszów, Poland)

Abstract

As the number of users increased over the years, pioneering technologies and solutions in given areas ceased to be sufficient even in terms of performance. Therefore, there was a need for their development or even redesign and redefinition. One of the issues that undoubtedly has a huge impact on the current shape of the global network and the way information is processed in it is the issue of traffic balancing, especially the one in the server infrastructure related to the WWW service, providing users with the possibility of efficient and reliable web browsing. The paper presents a comparative analysis of selected open-source solutions used for traffic balancing in server infrastructures providing WWW service based on selected criteria. The designed architecture of the test environment and the test results of selected tools implementing the traffic-balancing functionality are presented. Methodologies, test plans, and comparison criteria are proposed. A comparative analysis of results based on specific criteria was performed. The balance between network traffic optimization and load balancing distribution among servers is crucial for the development of energy-efficient data processing centers.

Suggested Citation

  • Paweł Dymora & Mirosław Mazurek & Bartosz Sudek, 2021. "Comparative Analysis of Selected Open-Source Solutions for Traffic Balancing in Server Infrastructures Providing WWW Service," Energies, MDPI, vol. 14(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7719-:d:681723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7719/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7719/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vangelis Marinakis, 2020. "Big Data for Energy Management and Energy-Efficient Buildings," Energies, MDPI, vol. 13(7), pages 1-18, March.
    2. Himanshi Babbar & Shalli Rani & Divya Gupta & Hani Moaiteq Aljahdali & Aman Singh & Fadi Al-Turjman, 2021. "Load Balancing Algorithm on the Immense Scale of Internet of Things in SDN for Smart Cities," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    3. Shailendra Singh & Abdulsalam Yassine, 2018. "Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting," Energies, MDPI, vol. 11(2), pages 1-26, February.
    4. Luca Pinciroli & Piero Baraldi & Guido Ballabio & Michele Compare & Enrico Zio, 2021. "Deep Reinforcement Learning Based on Proximal Policy Optimization for the Maintenance of a Wind Farm with Multiple Crews," Energies, MDPI, vol. 14(20), pages 1-17, October.
    5. Rubén Pérez-Chacón & José M. Luna-Romera & Alicia Troncoso & Francisco Martínez-Álvarez & José C. Riquelme, 2018. "Big Data Analytics for Discovering Electricity Consumption Patterns in Smart Cities," Energies, MDPI, vol. 11(3), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanwen Zhang & Yanwei Liu & Fukun Gui & Xu Yang, 2023. "A Universal Aquaculture Environmental Anomaly Monitoring System," Sustainability, MDPI, vol. 15(7), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    2. Ru-Guan Wang & Wen-Jen Ho & Kuei-Chun Chiang & Yung-Chieh Hung & Jen-Kuo Tai & Jia-Cheng Tan & Mei-Ling Chuang & Chi-Yun Ke & Yi-Fan Chien & An-Ping Jeng & Chien-Cheng Chou, 2023. "Analyzing Long-Term and High Instantaneous Power Consumption of Buildings from Smart Meter Big Data with Deep Learning and Knowledge Graph Techniques," Energies, MDPI, vol. 16(19), pages 1-24, September.
    3. J. R. S. Iruela & L. G. B. Ruiz & M. I. Capel & M. C. Pegalajar, 2021. "A TensorFlow Approach to Data Analysis for Time Series Forecasting in the Energy-Efficiency Realm," Energies, MDPI, vol. 14(13), pages 1-22, July.
    4. Gema Hernández-Moral & Sofía Mulero-Palencia & Víctor Iván Serna-González & Carla Rodríguez-Alonso & Roberto Sanz-Jimeno & Vangelis Marinakis & Nikos Dimitropoulos & Zoi Mylona & Daniele Antonucci & H, 2021. "Big Data Value Chain: Multiple Perspectives for the Built Environment," Energies, MDPI, vol. 14(15), pages 1-21, July.
    5. Francisco Martínez-Álvarez & Alicia Troncoso & José C. Riquelme, 2018. "Data Science and Big Data in Energy Forecasting," Energies, MDPI, vol. 11(11), pages 1-2, November.
    6. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    7. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    8. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    9. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    10. Vangelis Marinakis & Themistoklis Koutsellis & Alexandros Nikas & Haris Doukas, 2021. "AI and Data Democratisation for Intelligent Energy Management," Energies, MDPI, vol. 14(14), pages 1-14, July.
    11. Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
    12. Evelina Di Corso & Tania Cerquitelli & Daniele Apiletti, 2018. "METATECH: METeorological Data Analysis for Thermal Energy CHaracterization by Means of Self-Learning Transparent Models," Energies, MDPI, vol. 11(6), pages 1-24, May.
    13. Zunaira Nadeem & Nadeem Javaid & Asad Waqar Malik & Sohail Iqbal, 2018. "Scheduling Appliances with GA, TLBO, FA, OSR and Their Hybrids Using Chance Constrained Optimization for Smart Homes," Energies, MDPI, vol. 11(4), pages 1-30, April.
    14. César Benavente-Peces & Nisrine Ibadah, 2020. "Buildings Energy Efficiency Analysis and Classification Using Various Machine Learning Technique Classifiers," Energies, MDPI, vol. 13(13), pages 1-24, July.
    15. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko, 2021. "ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise," Energies, MDPI, vol. 14(23), pages 1-22, November.
    16. Fan Yang & Qian Mao, 2023. "Auto-Evaluation Model for the Prediction of Building Energy Consumption That Combines Modified Kalman Filtering and Long Short-Term Memory," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    17. Dana-Mihaela Petroșanu & George Căruțașu & Nicoleta Luminița Căruțașu & Alexandru Pîrjan, 2019. "A Review of the Recent Developments in Integrating Machine Learning Models with Sensor Devices in the Smart Buildings Sector with a View to Attaining Enhanced Sensing, Energy Efficiency, and Optimal B," Energies, MDPI, vol. 12(24), pages 1-64, December.
    18. Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2018. "Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting," Energies, MDPI, vol. 11(8), pages 1-19, August.
    19. Mohammed Alnahhal†& Omar Antar & Ahmad Sakhrieh & Muataz Al Hazza, 2024. "Analyzing Energy Consumption in Universities: A Literature Review," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 18-27, May.
    20. Vangelis Marinakis & Alexandros Flamos & Giorgos Stamtsis & Ioannis Georgizas & Yannis Maniatis & Haris Doukas, 2020. "The Efforts towards and Challenges of Greece’s Post-Lignite Era: The Case of Megalopolis," Sustainability, MDPI, vol. 12(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7719-:d:681723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.