IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7470-d675142.html
   My bibliography  Save this article

A New Methodological Approach for the Evaluation of Scaling Up a Latent Storage Module for Integration in Heat Pumps

Author

Listed:
  • Gabriel Zsembinszki

    (GREiA Research Group, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Boniface Dominick Mselle

    (GREiA Research Group, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • David Vérez

    (GREiA Research Group, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Emiliano Borri

    (GREiA Research Group, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

  • Andreas Strehlow

    (AKG Verwaltungsgesellschaft mbH, Am Hohlen Weg 31, 34369 Hofgeismar, Germany)

  • Birgo Nitsch

    (AKG Verwaltungsgesellschaft mbH, Am Hohlen Weg 31, 34369 Hofgeismar, Germany)

  • Andrea Frazzica

    (Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, CNR ITAE, 98126 Messina, Italy)

  • Valeria Palomba

    (Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, CNR ITAE, 98126 Messina, Italy)

  • Luisa F. Cabeza

    (GREiA Research Group, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain)

Abstract

A clear gap was identified in the literature regarding the in-depth evaluation of scaling up thermal energy storage components. To cover such a gap, a new methodological approach was developed and applied to a novel latent thermal energy storage module. The purpose of this paper is to identify some key aspects to be considered when scaling up the module from lab-scale to full-scale using different performance indicators calculated in both charge and discharge. Different normalization methods were applied to allow an appropriate comparison of the results at both scales. As a result of the scaling up, the theoretical energy storage capacity increases by 52% and 145%, the average charging power increases by 21% and 94%, while the average discharging power decreases by 16% but increases by 36% when mass and volume normalization methods are used, respectively. When normalization by the surface area of heat transfer is used, all of the above performance indicators decrease, especially the average discharging power, which decreases by 49%. Moreover, energy performance in charge and discharge decreases by 17% and 15%, respectively. However, efficiencies related to charging, discharging, and round-trip processes are practically not affected by the scaling up.

Suggested Citation

  • Gabriel Zsembinszki & Boniface Dominick Mselle & David Vérez & Emiliano Borri & Andreas Strehlow & Birgo Nitsch & Andrea Frazzica & Valeria Palomba & Luisa F. Cabeza, 2021. "A New Methodological Approach for the Evaluation of Scaling Up a Latent Storage Module for Integration in Heat Pumps," Energies, MDPI, vol. 14(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7470-:d:675142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria-Mar Fernandez-Antolin & José Manuel del Río & Vincenzo Costanzo & Francesco Nocera & Roberto-Alonso Gonzalez-Lezcano, 2019. "Passive Design Strategies for Residential Buildings in Different Spanish Climate Zones," Sustainability, MDPI, vol. 11(18), pages 1-22, September.
    2. Valeria Palomba & Antonino Bonanno & Giovanni Brunaccini & Davide Aloisio & Francesco Sergi & Giuseppe E. Dino & Efstratios Varvaggiannis & Sotirios Karellas & Birgo Nitsch & Andreas Strehlow & André , 2021. "Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis," Energies, MDPI, vol. 14(9), pages 1-28, April.
    3. Valeria Palomba & Emiliano Borri & Antonios Charalampidis & Andrea Frazzica & Sotirios Karellas & Luisa F. Cabeza, 2021. "An Innovative Solar-Biomass Energy System to Increase the Share of Renewables in Office Buildings," Energies, MDPI, vol. 14(4), pages 1-25, February.
    4. Augusto Della Torre & Gianluca Montenegro & Angelo Onorati & Sumit Khadilkar & Roberto Icarelli, 2019. "Multi-Scale CFD Modeling of Plate Heat Exchangers Including Offset-Strip Fins and Dimple-Type Turbulators for Automotive Applications," Energies, MDPI, vol. 12(15), pages 1-20, August.
    5. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    6. Prieto, Cristina & Osuna, Rafael & Fernández, A. Inés & Cabeza, Luisa F., 2016. "Molten salt facilities, lessons learnt at pilot plant scale to guarantee commercial plants; heat losses evaluation and correction," Renewable Energy, Elsevier, vol. 94(C), pages 175-185.
    7. Palomba, Valeria & Borri, Emiliano & Charalampidis, Antonios & Frazzica, Andrea & Cabeza, Luisa F. & Karellas, Sotirios, 2020. "Implementation of a solar-biomass system for multi-family houses: Towards 100% renewable energy utilization," Renewable Energy, Elsevier, vol. 166(C), pages 190-209.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeria Palomba & Emiliano Borri & Antonios Charalampidis & Andrea Frazzica & Sotirios Karellas & Luisa F. Cabeza, 2021. "An Innovative Solar-Biomass Energy System to Increase the Share of Renewables in Office Buildings," Energies, MDPI, vol. 14(4), pages 1-25, February.
    2. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    3. Valeria Palomba & Antonino Bonanno & Giovanni Brunaccini & Davide Aloisio & Francesco Sergi & Giuseppe E. Dino & Efstratios Varvaggiannis & Sotirios Karellas & Birgo Nitsch & Andreas Strehlow & André , 2021. "Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis," Energies, MDPI, vol. 14(9), pages 1-28, April.
    4. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    5. Liwei Wen & Kyosuke Hiyama, 2018. "Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    6. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Marika Pilou & George Kosmadakis & George Meramveliotakis, 2023. "Modeling of an Integrated Renewable-Energy-Based System for Heating, Cooling, and Electricity for Buildings," Energies, MDPI, vol. 16(12), pages 1-29, June.
    8. Peiró, Gerard & Prieto, Cristina & Gasia, Jaume & Jové, Aleix & Miró, Laia & Cabeza, Luisa F., 2018. "Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation," Renewable Energy, Elsevier, vol. 121(C), pages 236-248.
    9. Lygouras, Eleftherios & Papatsounis, Adamantios G. & Botsaris, Pantelis N. & Pechtelidis, Alexandros, 2023. "Optimization & techno-economic analysis of a hybrid system with thermal energy storage within a LEC," Renewable Energy, Elsevier, vol. 215(C).
    10. Xiong, Teng & Shah, Kwok Wei & Kua, Harn Wei, 2021. "Thermal performance enhancement of cementitious composite containing polystyrene/n-octadecane microcapsules: An experimental and numerical study," Renewable Energy, Elsevier, vol. 169(C), pages 335-357.
    11. Cristina Prieto & Sonia Fereres & Luisa F. Cabeza, 2020. "The Role of Innovation in Industry Product Deployment: Developing Thermal Energy Storage for Concentrated Solar Power," Energies, MDPI, vol. 13(11), pages 1-19, June.
    12. Silvia Soutullo & Emanuela Giancola & María Nuria Sánchez & José Antonio Ferrer & David García & María José Súarez & Jesús Ignacio Prieto & Elena Antuña-Yudego & Juan Luís Carús & Miguel Ángel Fernánd, 2020. "Methodology for Quantifying the Energy Saving Potentials Combining Building Retrofitting, Solar Thermal Energy and Geothermal Resources," Energies, MDPI, vol. 13(22), pages 1-25, November.
    13. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Prieto, Cristina & Cabeza, Luisa F., 2016. "Experimental analysis of charging and discharging processes, with parallel and counter flow arrangements, in a molten salts high temperature pilot plant scale setup," Applied Energy, Elsevier, vol. 178(C), pages 394-403.
    14. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Sergio L. González-González & Francisco J. Rey-Martínez, 2018. "Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study," Energies, MDPI, vol. 11(11), pages 1-17, November.
    15. Kosara Kujundzic & Slavica Stamatovic Vuckovic & Ana Radivojević, 2023. "Toward Regenerative Sustainability: A Passive Design Comfort Assessment Method of Indoor Environment," Sustainability, MDPI, vol. 15(1), pages 1-33, January.
    16. Maria-Mar Fernandez-Antolin & José-Manuel del-Río & Fernando del Ama Gonzalo & Roberto-Alonso Gonzalez-Lezcano, 2020. "The Relationship between the Use of Building Performance Simulation Tools by Recent Graduate Architects and the Deficiencies in Architectural Education," Energies, MDPI, vol. 13(5), pages 1-20, March.
    17. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Antonios Charalampidis & Sotirios Karellas & Luisa F. Cabeza, 2023. "Numerical and Experimental Analysis of a Low-GWP Heat Pump Coupled to Electrical and Thermal Energy Storage to Increase the Share of Renewables across Europe," Sustainability, MDPI, vol. 15(6), pages 1-33, March.
    18. Helena Monteiro & Fausto Freire & John E. Fernández, 2020. "Life-Cycle Assessment of Alternative Envelope Construction for a New House in South-Western Europe: Embodied and Operational Magnitude," Energies, MDPI, vol. 13(16), pages 1-20, August.
    19. Tomasz Sliwa & Tomasz Kowalski & Dominik Cekus & Aneta Sapińska-Śliwa, 2021. "Research on Fresh and Hardened Sealing Slurries with the Addition of Magnesium Regarding Thermal Conductivity for Energy Piles and Borehole Heat Exchangers," Energies, MDPI, vol. 14(16), pages 1-13, August.
    20. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7470-:d:675142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.