IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2965-d253696.html
   My bibliography  Save this article

Multi-Scale CFD Modeling of Plate Heat Exchangers Including Offset-Strip Fins and Dimple-Type Turbulators for Automotive Applications

Author

Listed:
  • Augusto Della Torre

    (Politecnico di Milano, Dipartimento di Energia, Via Lambruschini, 4-20156 Milano, Italy)

  • Gianluca Montenegro

    (Politecnico di Milano, Dipartimento di Energia, Via Lambruschini, 4-20156 Milano, Italy)

  • Angelo Onorati

    (Politecnico di Milano, Dipartimento di Energia, Via Lambruschini, 4-20156 Milano, Italy)

  • Sumit Khadilkar

    (UFI Innovation Center, Corso Trento, 20-38061 Ala, Italy)

  • Roberto Icarelli

    (UFI Filters, Via dell’Industria, 4-37060 Nogarole Rocca, Italy)

Abstract

Plate heat exchangers including offset-strip fins or dimple-type turbulators have a wide application in the automotive field as oil coolers for internal combustion engines and transmissions. Their optimization is a complex task since it requires targeting different objectives: High compactness, low pressure drop and high heat-transfer efficiency. In this context, the availability of accurate Computational Fluid Dynamics (CFD) simulation models plays an important role during the design phase. In this work, the development of a computational framework for the CFD simulation of compact oil-to-liquid heat exchangers, including offset-strip fins and dimples, is presented. The paper addresses the modeling problem at different scales, ranging from the characteristic size of the turbulator geometry (typically µm–mm) to the full scale of the overall device (typically cm–dm). The simulation framework is based on multi-scale concept, which applies: (a) Detailed simulations for the characterization of the micro-scale properties of the turbulator, (b) an upscaling approach to derive suitable macro-scale models for the turbulators and (c) full-scale simulations of the entire cooler, including the porous models derived for the smaller scales. The model is validated comparing with experimental data under different operating conditions. Then, it is adopted to investigate the details of the fluid dynamics and heat-transfer process, providing guidelines for the optimization of the device.

Suggested Citation

  • Augusto Della Torre & Gianluca Montenegro & Angelo Onorati & Sumit Khadilkar & Roberto Icarelli, 2019. "Multi-Scale CFD Modeling of Plate Heat Exchangers Including Offset-Strip Fins and Dimple-Type Turbulators for Automotive Applications," Energies, MDPI, vol. 12(15), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2965-:d:253696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yakut, Kenan & Sahin, Bayram, 2004. "Flow-induced vibration analysis of conical rings used for heat transfer enhancement in heat exchangers," Applied Energy, Elsevier, vol. 78(3), pages 273-288, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoni Różowicz & Henryk Wachta & Krzysztof Baran & Marcin Leśko & Sebastian Różowicz, 2022. "Arrangement of LEDs and Their Impact on Thermal Operating Conditions in High-Power Luminaires," Energies, MDPI, vol. 15(21), pages 1-17, November.
    2. Krzysztof Baran & Antoni Różowicz & Henryk Wachta & Sebastian Różowicz, 2020. "Modeling of Selected Lighting Parameters of LED Panel," Energies, MDPI, vol. 13(14), pages 1-22, July.
    3. Jakub Mularski & Norbert Modliński, 2021. "Entrained-Flow Coal Gasification Process Simulation with the Emphasis on Empirical Char Conversion Models Optimization Procedure," Energies, MDPI, vol. 14(6), pages 1-20, March.
    4. Gabriel Zsembinszki & Boniface Dominick Mselle & David Vérez & Emiliano Borri & Andreas Strehlow & Birgo Nitsch & Andrea Frazzica & Valeria Palomba & Luisa F. Cabeza, 2021. "A New Methodological Approach for the Evaluation of Scaling Up a Latent Storage Module for Integration in Heat Pumps," Energies, MDPI, vol. 14(22), pages 1-17, November.
    5. Krzysztof Baran & Antoni Różowicz & Henryk Wachta & Sebastian Różowicz & Damian Mazur, 2019. "Thermal Analysis of the Factors Influencing Junction Temperature of LED Panel Sources," Energies, MDPI, vol. 12(20), pages 1-20, October.
    6. Jakub Mularski & Norbert Modliński, 2020. "Impact of Chemistry–Turbulence Interaction Modeling Approach on the CFD Simulations of Entrained Flow Coal Gasification," Energies, MDPI, vol. 13(23), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younus Hamoudi Assaf & Abdulrazzak Akroot & Hasanain A. Abdul Wahhab & Wadah Talal & Mothana Bdaiwi & Mohammed Y. Nawaf, 2023. "Impact of Nano Additives in Heat Exchangers with Twisted Tapes and Rings to Increase Efficiency: A Review," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    2. Akansu, Selahaddin Orhan, 2006. "Heat transfers and pressure drops for porous-ring turbulators in a circular pipe," Applied Energy, Elsevier, vol. 83(3), pages 280-298, March.
    3. Yakut, Kenan & Sahin, Bayram & Celik, Cafer & Alemdaroglu, Nihal & Kurnuc, Aslihan, 2005. "Effects of tapes with double-sided delta-winglets on heat and vortex characteristics," Applied Energy, Elsevier, vol. 80(1), pages 77-95, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2965-:d:253696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.