IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7381-d672980.html
   My bibliography  Save this article

Centralized Microgrid Control System in Compliance with IEEE 2030.7 Standard Based on an Advanced Field Unit

Author

Listed:
  • Soheil Pouraltafi-kheljan

    (Electric-Electronic Engineering Department, Middle East Technical University, Çankaya, Ankara 06800, Turkey)

  • Mesut Ugur

    (Earsis Technologies Ltd., METU Technopolis, Çankaya, Ankara 06800, Turkey)

  • Efecan Bozulu

    (Earsis Technologies Ltd., METU Technopolis, Çankaya, Ankara 06800, Turkey)

  • Bahadir Can Çalişkan

    (Research and Development Department, Başkent EDAŞ Electricity Distribution Inc., Ankara 06460, Turkey)

  • Ozan Keysan

    (Electric-Electronic Engineering Department, Middle East Technical University, Çankaya, Ankara 06800, Turkey)

  • Murat Gol

    (Electric-Electronic Engineering Department, Middle East Technical University, Çankaya, Ankara 06800, Turkey)

Abstract

The necessity for the utilization of microgrids emerges from the integration of distributed energy resources, electric vehicles, and battery storage systems into the conventional grid structure. In order to achieve a proper operation of the microgrid, the presence of a microgrid control system is crucial. The IEEE 2030.7 standard defines the microgrid control system as a key element of the microgrid that regulates every aspect of it at the point-of-interconnection with the distribution system, and autonomously manages operations such as the transitions of operating modes. In this paper, a microgrid control system is developed to achieve real-time monitoring and control through a centralized approach. The controller consists of a centralized server and advanced field units that are also developed during this work. The control functions of the centralized server ensure the proper operation during grid-connected and island modes, using the real-time data received via the advanced field unit. The developed server and the field unit constitute a complete system solution. The server is composed of control function and communication, database, and user interface modules. The microgrid control functions comprise dispatch and transition core-level functions. A rule-based core-level dispatch function guarantees the security of supply to critical loads during the islanded mode. The core-level transition function accomplishes a successful transition between the operation modes. Moreover, a communication framework and a graphical user interface are implemented. The presented system is tested through thecases based on the IEEE 2030.8 standard.

Suggested Citation

  • Soheil Pouraltafi-kheljan & Mesut Ugur & Efecan Bozulu & Bahadir Can Çalişkan & Ozan Keysan & Murat Gol, 2021. "Centralized Microgrid Control System in Compliance with IEEE 2030.7 Standard Based on an Advanced Field Unit," Energies, MDPI, vol. 14(21), pages 1-31, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7381-:d:672980
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    2. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    3. Mukhopadhyay, Bineeta & Das, Debapriya, 2021. "Optimal multi-objective expansion planning of a droop-regulated islanded microgrid," Energy, Elsevier, vol. 218(C).
    4. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    5. Palizban, Omid & Kauhaniemi, Kimmo, 2015. "Hierarchical control structure in microgrids with distributed generation: Island and grid-connected mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 797-813.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos M. Manousakis, 2022. "Advanced Electrical Measurements Technologies," Energies, MDPI, vol. 15(9), pages 1-6, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    2. Hak-Ju Lee & Ba Hau Vu & Rehman Zafar & Sung-Wook Hwang & Il-Yop Chung, 2021. "Design Framework of a Stand-Alone Microgrid Considering Power System Performance and Economic Efficiency," Energies, MDPI, vol. 14(2), pages 1-28, January.
    3. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    4. Vincenzo Franzitta & Domenico Curto & Davide Rao, 2016. "Energetic Sustainability Using Renewable Energies in the Mediterranean Sea," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    5. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    6. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    7. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    8. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    9. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    10. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    11. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    12. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    13. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
    14. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    15. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    16. Imed Khabbouchi & Dhaou Said & Aziz Oukaira & Idir Mellal & Lyes Khoukhi, 2023. "Machine Learning and Game-Theoretic Model for Advanced Wind Energy Management Protocol (AWEMP)," Energies, MDPI, vol. 16(5), pages 1-15, February.
    17. Mohamed Els. S. Abdelwareth & Dedet Candra Riawan & Chow Chompoo-inwai, 2023. "Optimum Generated Power for a Hybrid DG/PV/Battery Radial Network Using Meta-Heuristic Algorithms Based DG Allocation," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
    18. Obara, Shin'ya & Morel Rios, Jorge Ricardo & Okada, Masaki, 2015. "Control of cyclic fluctuations in solid oxide fuel cell cogeneration accompanied by photovoltaics," Energy, Elsevier, vol. 91(C), pages 994-1008.
    19. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    20. Petrelli, Marina & Fioriti, Davide & Berizzi, Alberto & Bovo, Cristian & Poli, Davide, 2021. "A novel multi-objective method with online Pareto pruning for multi-year optimization of rural microgrids," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7381-:d:672980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.