IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp221-234.html
   My bibliography  Save this article

Hydrogen production, oxygen separation and syngas oxy-combustion inside a water splitting membrane reactor

Author

Listed:
  • Nemitallah, Medhat A.
  • Habib, Mohamed A.
  • Salaudeen, Shakirudeen A.
  • Mansir, Ibrahim

Abstract

The present work provides numerical investigations of oxygen permeation, hydrogen generation through water splitting using an oxygen transport membrane and oxy-combustion of syngas. The work involves two models; one for hydrogen generation and oxygen permeation from water splitting, and the other for syngas reaction kinetics. Considering steam dissociation reaction and oxygen permeation process, the hydrogen generation model is developed from oxygen permeation model using user defined function (UDF) that enable the transfer of oxygen across the membrane. The codes were written in C++, then compiled and hooked to the ANSYS Fluent 15.0 software. The investigations revealed that, due to combustion, the syngas reactive flow results in higher oxygen permeation and hydrogen generation rates than the non-reactive case. Effects of various influential parameters such as fuel composition, membrane thickness, operating temperature, sweep gas flow rate and CO2 circulation are investigated in the present study. It was realized that increase in sweep flow rate and inlet temperature results in enhanced oxygen permeation and hydrogen generation rates. Whereas, increase in CO/H2 ratio, membrane thickness and CO2 circulation reduces the amounts of hydrogen and oxygen generated.

Suggested Citation

  • Nemitallah, Medhat A. & Habib, Mohamed A. & Salaudeen, Shakirudeen A. & Mansir, Ibrahim, 2017. "Hydrogen production, oxygen separation and syngas oxy-combustion inside a water splitting membrane reactor," Renewable Energy, Elsevier, vol. 113(C), pages 221-234.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:221-234
    DOI: 10.1016/j.renene.2017.05.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, Pervez & Habib, Mohamed A. & Ben-Mansour, Rached & Kirchen, Patrick & Ghoniem, Ahmed F., 2014. "CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion," Energy, Elsevier, vol. 77(C), pages 932-944.
    2. Sukhvinder P.S. Badwal & Sarbjit Giddey & Christopher Munnings, 2013. "Hydrogen production via solid electrolytic routes," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(5), pages 473-487, September.
    3. Habib, Mohamed A. & Salaudeen, Shakirudeen A. & Nemitallah, Medhat A. & Ben-Mansour, R. & Mokheimer, Esmail M.A., 2016. "Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor," Energy, Elsevier, vol. 96(C), pages 654-665.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansir, Ibrahim B. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application," Applied Energy, Elsevier, vol. 229(C), pages 828-840.
    2. Gong, Changming & Li, Zhaohui & Li, Dong & Liu, Jiajun & Si, Xiankai & Yu, Jiawei & Huang, Wei & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical investigation of hydrogen addition effects on methanol-air mixtures combustion in premixed laminar flames under lean burn conditions," Renewable Energy, Elsevier, vol. 127(C), pages 56-63.
    3. Lyu, Yajin & Xing, Chang & Liu, Li & Peng, Jiangbo & Shen, Wenkai & Yu, Xin & Qiu, Penghua, 2022. "Study of turbulent flame characteristics of water vapor diluted hydrogen-air micro-mixing combustion," Renewable Energy, Elsevier, vol. 189(C), pages 1194-1205.
    4. Te Zhao & Chusheng Chen & Hong Ye, 2021. "CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor," Energies, MDPI, vol. 14(21), pages 1-17, November.
    5. Te Zhao & Chusheng Chen & Hong Ye, 2021. "CFD Simulation of Syngas Combustion in a Two-Pass Oxygen Transport Membrane Reactor for Fire Tube Boiler Application," Energies, MDPI, vol. 14(21), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Te Zhao & Chusheng Chen & Hong Ye, 2021. "CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor," Energies, MDPI, vol. 14(21), pages 1-17, November.
    2. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    3. Habib, Mohamed A. & Salaudeen, Shakirudeen A. & Nemitallah, Medhat A. & Ben-Mansour, R. & Mokheimer, Esmail M.A., 2016. "Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor," Energy, Elsevier, vol. 96(C), pages 654-665.
    4. Giap, Van-Tien & Lee, Young Duk & Kim, Young Sang & Ahn, Kook Young, 2020. "A novel electrical energy storage system based on a reversible solid oxide fuel cell coupled with metal hydrides and waste steam," Applied Energy, Elsevier, vol. 262(C).
    5. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    6. Mansir, Ibrahim B. & Nemitallah, Medhat A. & Habib, Mohamed A. & Khalifa, Atia E., 2018. "Experimental and numerical investigation of flow field and oxy-methane combustion characteristics in a low-power porous-plate reactor," Energy, Elsevier, vol. 160(C), pages 783-795.
    7. Habib, Mohamed A. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Abdelhafez, Ahmed, 2017. "Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor," Applied Energy, Elsevier, vol. 189(C), pages 177-186.
    8. Te Zhao & Chusheng Chen & Hong Ye, 2021. "CFD Simulation of Syngas Combustion in a Two-Pass Oxygen Transport Membrane Reactor for Fire Tube Boiler Application," Energies, MDPI, vol. 14(21), pages 1-15, November.
    9. Nemitallah, Medhat A. & Habib, Mohamed A. & Mezghani, K., 2015. "Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor," Energy, Elsevier, vol. 84(C), pages 600-611.
    10. Sukhvinder P.S. Badwal & Sarbjit Giddey & Christopher Munnings, 2018. "Emerging technologies, markets and commercialization of solid‐electrolytic hydrogen production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(3), May.
    11. Ilbas, Mustafa & Karyeyen, Serhat, 2017. "Turbulent diffusion flames of a low-calorific value syngas under varying turbulator angles," Energy, Elsevier, vol. 138(C), pages 383-393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:221-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.