IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v165y2021ip1p701-715.html
   My bibliography  Save this article

Uncertainty quantification on the effects of rain-induced erosion on annual energy production and performance of a Multi-MW wind turbine

Author

Listed:
  • Papi, Francesco
  • Balduzzi, Francesco
  • Ferrara, Giovanni
  • Bianchini, Alessandro

Abstract

Wind turbine blade erosion has risen to the attention of researchers and industry lately in an effort to keep ageing wind farms productive. Although not new, erosion-related blade damage seems to be more severe in recent, particularly off-shore, installations. With the high blade-tip speeds of modern wind turbines, installation in rainy locations can cause significant damage. While all the players in the industry agree that a reduction on Annual Energy Production (AEP) has to be expected, its magnitude remains uncertain, with wide range of variability forecasted in published research. This work proposes a probabilistic framework to assess AEP reductions, allowing for a better understanding of the key mechanism that cause turbine power loss and for a better quantification of AEP losses. The method is tested on the DTU10MW reference case. Erosion-related uncertainties are estimated based on available literature data. Lift and drag coefficients of the airfoils are derived using CFD, and the entire wind turbine is simulated aero-servo-elastically using a Blade Element Momentum code. An arbitrary Polynomial Chaos method is used to estimate the uncertainties associated to key turbine figures due to the erosion inputs. Results show how AEP reductions, while still significant, are lower than most published literature indicates.

Suggested Citation

  • Papi, Francesco & Balduzzi, Francesco & Ferrara, Giovanni & Bianchini, Alessandro, 2021. "Uncertainty quantification on the effects of rain-induced erosion on annual energy production and performance of a Multi-MW wind turbine," Renewable Energy, Elsevier, vol. 165(P1), pages 701-715.
  • Handle: RePEc:eee:renene:v:165:y:2021:i:p1:p:701-715
    DOI: 10.1016/j.renene.2020.11.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herring, Robbie & Dyer, Kirsten & Martin, Ffion & Ward, Carwyn, 2019. "The increasing importance of leading edge erosion and a review of existing protection solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Matthias Schramm & Hamid Rahimi & Bernhard Stoevesandt & Kim Tangager, 2017. "The Influence of Eroded Blades on Wind Turbine Performance Using Numerical Simulations," Energies, MDPI, vol. 10(9), pages 1-15, September.
    3. Zanon, Alessandro & De Gennaro, Michele & Kühnelt, Helmut, 2018. "Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies," Renewable Energy, Elsevier, vol. 115(C), pages 760-772.
    4. Han, Woobeom & Kim, Jonghwa & Kim, Bumsuk, 2018. "Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 817-823.
    5. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castorrini, Alessio & Ortolani, Andrea & Campobasso, M. Sergio, 2023. "Assessing the progression of wind turbine energy yield losses due to blade erosion by resolving damage geometries from lab tests and field observations," Renewable Energy, Elsevier, vol. 218(C).
    2. Charlotte Bay Hasager & Flemming Vejen & Witold Robert Skrzypiński & Anna-Maria Tilg, 2021. "Rain Erosion Load and Its Effect on Leading-Edge Lifetime and Potential of Erosion-Safe Mode at Wind Turbines in the North Sea and Baltic Sea," Energies, MDPI, vol. 14(7), pages 1-24, April.
    3. Sergio Campobasso, M. & Castorrini, Alessio & Ortolani, Andrea & Minisci, Edmondo, 2023. "Probabilistic analysis of wind turbine performance degradation due to blade erosion accounting for uncertainty of damage geometry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    4. Mishnaevsky, Leon & Hasager, Charlotte Bay & Bak, Christian & Tilg, Anna-Maria & Bech, Jakob I. & Doagou Rad, Saeed & Fæster, Søren, 2021. "Leading edge erosion of wind turbine blades: Understanding, prevention and protection," Renewable Energy, Elsevier, vol. 169(C), pages 953-969.
    5. Bech, Jakob Ilsted & Johansen, Nicolai Frost-Jensen & Madsen, Martin Bonde & Hannesdóttir, Ásta & Hasager, Charlotte Bay, 2022. "Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades," Renewable Energy, Elsevier, vol. 197(C), pages 776-789.
    6. López, Javier Contreras & Kolios, Athanasios & Wang, Lin & Chiachio, Manuel, 2023. "A wind turbine blade leading edge rain erosion computational framework," Renewable Energy, Elsevier, vol. 203(C), pages 131-141.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Papi & Lorenzo Cappugi & Simone Salvadori & Mauro Carnevale & Alessandro Bianchini, 2020. "Uncertainty Quantification of the Effects of Blade Damage on the Actual Energy Production of Modern Wind Turbines," Energies, MDPI, vol. 13(15), pages 1-18, July.
    2. Jeanie A. Aird & Rebecca J. Barthelmie & Sara C. Pryor, 2023. "Automated Quantification of Wind Turbine Blade Leading Edge Erosion from Field Images," Energies, MDPI, vol. 16(6), pages 1-23, March.
    3. Sergio Campobasso, M. & Castorrini, Alessio & Ortolani, Andrea & Minisci, Edmondo, 2023. "Probabilistic analysis of wind turbine performance degradation due to blade erosion accounting for uncertainty of damage geometry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    4. Gregory Duthé & Imad Abdallah & Sarah Barber & Eleni Chatzi, 2021. "Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades," Energies, MDPI, vol. 14(21), pages 1-33, November.
    5. López, Javier Contreras & Kolios, Athanasios & Wang, Lin & Chiachio, Manuel, 2023. "A wind turbine blade leading edge rain erosion computational framework," Renewable Energy, Elsevier, vol. 203(C), pages 131-141.
    6. Hasager, C. & Vejen, F. & Bech, J.I. & Skrzypiński, W.R. & Tilg, A.-M. & Nielsen, M., 2020. "Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas," Renewable Energy, Elsevier, vol. 149(C), pages 91-102.
    7. Mishnaevsky, Leon & Hasager, Charlotte Bay & Bak, Christian & Tilg, Anna-Maria & Bech, Jakob I. & Doagou Rad, Saeed & Fæster, Søren, 2021. "Leading edge erosion of wind turbine blades: Understanding, prevention and protection," Renewable Energy, Elsevier, vol. 169(C), pages 953-969.
    8. Xiaohang Wang & Zhenbo Tang & Na Yan & Guojun Zhu, 2022. "Effect of Different Types of Erosion on the Aerodynamic Performance of Wind Turbine Airfoils," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    9. Mikkel Schou Nielsen & Ivan Nikolov & Emil Krog Kruse & Jørgen Garnæs & Claus Brøndgaard Madsen, 2020. "High-Resolution Structure-from-Motion for Quantitative Measurement of Leading-Edge Roughness," Energies, MDPI, vol. 13(15), pages 1-17, July.
    10. Ge, Mingwei & Sun, Haitao & Meng, Hang & Li, Xintao, 2024. "An improved B-L model for dynamic stall prediction of rough-surface airfoils," Renewable Energy, Elsevier, vol. 226(C).
    11. Koodly Ravishankara, Akshay & Özdemir, Huseyin & van der Weide, Edwin, 2021. "Analysis of leading edge erosion effects on turbulent flow over airfoils," Renewable Energy, Elsevier, vol. 172(C), pages 765-779.
    12. Sara C. Pryor & Rebecca J. Barthelmie & Jeremy Cadence & Ebba Dellwik & Charlotte B. Hasager & Stephan T. Kral & Joachim Reuder & Marianne Rodgers & Marijn Veraart, 2022. "Atmospheric Drivers of Wind Turbine Blade Leading Edge Erosion: Review and Recommendations for Future Research," Energies, MDPI, vol. 15(22), pages 1-41, November.
    13. Yang, Muchen & Xiao, Zhixiang, 2019. "Distributed roughness induced transition on wind-turbine airfoils simulated by four-equation k-ω-γ-Ar transition model," Renewable Energy, Elsevier, vol. 135(C), pages 1166-1177.
    14. Verma, Amrit Shankar & Jiang, Zhiyu & Caboni, Marco & Verhoef, Hans & van der Mijle Meijer, Harald & Castro, Saullo G.P. & Teuwen, Julie J.E., 2021. "A probabilistic rainfall model to estimate the leading-edge lifetime of wind turbine blade coating system," Renewable Energy, Elsevier, vol. 178(C), pages 1435-1455.
    15. Lopez, Javier Contreras & Kolios, Athanasios, 2024. "An autonomous decision-making agent for offshore wind turbine blades under leading edge erosion," Renewable Energy, Elsevier, vol. 227(C).
    16. Charlotte Bay Hasager & Flemming Vejen & Witold Robert Skrzypiński & Anna-Maria Tilg, 2021. "Rain Erosion Load and Its Effect on Leading-Edge Lifetime and Potential of Erosion-Safe Mode at Wind Turbines in the North Sea and Baltic Sea," Energies, MDPI, vol. 14(7), pages 1-24, April.
    17. Castorrini, Alessio & Ortolani, Andrea & Campobasso, M. Sergio, 2023. "Assessing the progression of wind turbine energy yield losses due to blade erosion by resolving damage geometries from lab tests and field observations," Renewable Energy, Elsevier, vol. 218(C).
    18. Verma, Amrit Shankar & Yan, Jiquan & Hu, Weifei & Jiang, Zhiyu & Shi, Wei & Teuwen, Julie J.E., 2023. "A review of impact loads on composite wind turbine blades: Impact threats and classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    19. Deshun Li & Ting He & Qing Wang, 2023. "Experimental Research on the Effect of Particle Parameters on Dynamic Stall Characteristics of the Wind Turbine Airfoil," Energies, MDPI, vol. 16(4), pages 1-15, February.
    20. Jung-Bo Sim & Se-Jin Yook & Young Won Kim, 2023. "Development of 180 kW Organic Rankine Cycle (ORC) with a High-Efficiency Two-Stage Axial Turbine," Energies, MDPI, vol. 16(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:165:y:2021:i:p1:p:701-715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.