IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6935-d661990.html
   My bibliography  Save this article

Meticulously Intelligent Identification System for Smart Grid Network Stability to Optimize Risk Management

Author

Listed:
  • Qasem Abu Al-Haija

    (Department Computer Science/Cybersecurity, Princess Sumaya University for Technology (PSUT), Amman 11941, Jordan)

  • Abdallah A. Smadi

    (Department of Electrical and Computer Engineering, University of Idaho, Moscow, ID 83844, USA)

  • Mohammed F. Allehyani

    (Department of Electrical Engineering, University of Tabuk, Tabuk 47512, Saudi Arabia)

Abstract

The heterogeneous and interoperable nature of the cyber-physical system (CPS) has enabled the smart grid (SG) to operate near the stability limits with an inconsiderable accuracy margin. This has imposed the need for more intelligent, predictive, fast, and accurate algorithms that are able to operate the grid autonomously to avoid cascading failures and/or blackouts. In this paper, a new comprehensive identification system is proposed that employs various machine learning architectures for classifying stability records in smart grid networks. Specifically, seven machine learning architectures are investigated, including optimizable support vector machine (SVM), decision trees classifier (DTC), logistic regression classifier (LRC), naïve Bayes classifier (NBC), linear discriminant classifier (LDC), k-nearest neighbor (kNN), and ensemble boosted classifier (EBC). The developed models are evaluated and contrasted in terms of various performance evaluation metrics such as accuracy, precision, recall, harmonic mean, prediction overhead, and others. Moreover, the system performance was evaluated on a recent and significant dataset for smart grid network stability (SGN_Stab2018), scoring a high identification accuracy (99.90%) with low identification overhead (4.17 μSec) for the optimizable SVM architecture. We also provide an in-depth description of our implementation in conjunction with an extensive experimental evaluation as well as a comparison with state-of-the-art models. The comparison outcomes obtained indicate that the optimized model provides a compact and efficient model that can successfully and accurately predict the voltage stability margin (VSM) considering different operating conditions, employing the fewest possible input features. Eventually, the results revealed the competency and superiority of the proposed optimized model over the other available models. The technique also speeds up the training process by reducing the number of simulations on a detailed power system model around operating points where correct predictions are made.

Suggested Citation

  • Qasem Abu Al-Haija & Abdallah A. Smadi & Mohammed F. Allehyani, 2021. "Meticulously Intelligent Identification System for Smart Grid Network Stability to Optimize Risk Management," Energies, MDPI, vol. 14(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6935-:d:661990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6935/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6935/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roman V. Kirin, 2021. "A Theoretical Analysis of Logistic Regression and Bayesian Classifiers," Papers 2108.03715, arXiv.org.
    2. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    3. Walter M. Villa-Acevedo & Jesús M. López-Lezama & Delia G. Colomé, 2020. "Voltage Stability Margin Index Estimation Using a Hybrid Kernel Extreme Learning Machine Approach," Energies, MDPI, vol. 13(4), pages 1-19, February.
    4. Bassamzadeh, Nastaran & Ghanem, Roger, 2017. "Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks," Applied Energy, Elsevier, vol. 193(C), pages 369-380.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazen Gazzan & Frederick T. Sheldon, 2023. "Opportunities for Early Detection and Prediction of Ransomware Attacks against Industrial Control Systems," Future Internet, MDPI, vol. 15(4), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    2. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    3. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    4. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    5. Deetjen, Thomas A. & Martin, Henry & Rhodes, Joshua D. & Webber, Michael E., 2018. "Modeling the optimal mix and location of wind and solar with transmission and carbon pricing considerations," Renewable Energy, Elsevier, vol. 120(C), pages 35-50.
    6. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    7. Dalala, Zakariya & Al-Omari, Murad & Al-Addous, Mohammad & Bdour, Mathhar & Al-Khasawneh, Yaqoub & Alkasrawi, Malek, 2022. "Increased renewable energy penetration in national electrical grids constraints and solutions," Energy, Elsevier, vol. 246(C).
    8. Zhiyong Li & Wenbin Wu & Yang Si & Xiaotao Chen, 2023. "Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties," Energies, MDPI, vol. 16(22), pages 1-15, November.
    9. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    10. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    11. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    12. Auth, Trevor L. & Wackerman, Grace E. & Garcia, Marcelo H. & Stillwell, Ashlynn S., 2021. "Low-head hydropower as a reserve power source: A case study of Northeastern Illinois," Renewable Energy, Elsevier, vol. 175(C), pages 980-989.
    13. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    14. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    15. Pierro, Marco & Perez, Richard & Perez, Marc & Prina, Matteo Giacomo & Moser, David & Cornaro, Cristina, 2021. "Italian protocol for massive solar integration: From solar imbalance regulation to firm 24/365 solar generation," Renewable Energy, Elsevier, vol. 169(C), pages 425-436.
    16. Andresen, Gorm B. & Søndergaard, Anders A. & Greiner, Martin, 2015. "Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis," Energy, Elsevier, vol. 93(P1), pages 1074-1088.
    17. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    18. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    19. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    20. Erika Barison & Federica Donda & Barbara Merson & Yann Le Gallo & Arnaud Réveillère, 2023. "An Insight into Underground Hydrogen Storage in Italy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6935-:d:661990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.