IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2028-d161972.html
   My bibliography  Save this article

Temperature and Velocity Effects on Mass and Momentum Transport in Spacer-Filled Channels for Reverse Electrodialysis: A Numerical Study

Author

Listed:
  • Zohreh Jalili

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
    Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway)

  • Jon G. Pharoah

    (Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada)

  • Odne Stokke Burheim

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway)

  • Kristian Etienne Einarsrud

    (Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway)

Abstract

Concentration polarization is one of the main challenges of membrane-based processes such as power generation by reverse electrodialysis. Spacers in the compartments can enhance mass transfer by reducing concentration polarization. Active spacers increase the available membrane surface area, thus avoiding the shadow effect introduced by inactive spacers. Optimizing the spacer-filled channels is crucial for improving mass transfer while maintaining reasonable pressure losses. The main objective of this work was to develop a numerical model based upon the Navier–Stokes and Nernst–Planck equations in OpenFOAM, for detailed investigation of mass transfer efficiency and pressure drop. The model is utilized in different spacer-filled geometries for varying Reynolds numbers, spacer conductivity and fluid temperature. Triangular corrugations are found to be the optimum geometry, particularly at low flow velocities. Cylindrical corrugations are better at high flow velocities due to lower pressure drop. Enhanced mass transfer and lower pressure drop by elevating temperature is demonstrated.

Suggested Citation

  • Zohreh Jalili & Jon G. Pharoah & Odne Stokke Burheim & Kristian Etienne Einarsrud, 2018. "Temperature and Velocity Effects on Mass and Momentum Transport in Spacer-Filled Channels for Reverse Electrodialysis: A Numerical Study," Energies, MDPI, vol. 11(8), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2028-:d:161972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2028/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2028/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maisonneuve, Jonathan & Pillay, Pragasen & Laflamme, Claude B., 2015. "Pressure-retarded osmotic power system model considering non-ideal effects," Renewable Energy, Elsevier, vol. 75(C), pages 416-424.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manzoor, Husnain & Selam, Muaz A. & Abdur Rahman, Fahim Bin & Adham, Samer & Castier, Marcelo & Abdel-Wahab, Ahmed, 2020. "A tool for assessing the scalability of pressure-retarded osmosis (PRO) membranes," Renewable Energy, Elsevier, vol. 149(C), pages 987-999.
    2. He, Wei & Wang, Yang & Elyasigomari, Vahid & Shaheed, Mohammad Hasan, 2016. "Evaluation of the detrimental effects in osmotic power assisted reverse osmosis (RO) desalination," Renewable Energy, Elsevier, vol. 93(C), pages 608-619.
    3. Di Michele, F. & Felaco, E. & Gasser, I. & Serbinovskiy, A. & Struchtrup, H., 2019. "Modeling, simulation and optimization of a pressure retarded osmosis power station," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 189-207.
    4. Wen Yi Chia & Kuan Shiong Khoo & Shir Reen Chia & Kit Wayne Chew & Guo Yong Yew & Yeek-Chia Ho & Pau Loke Show & Wei-Hsin Chen, 2020. "Factors Affecting the Performance of Membrane Osmotic Processes for Bioenergy Development," Energies, MDPI, vol. 13(2), pages 1-22, January.
    5. Nagy, Endre & Dudás, József & Hegedüs, Imre, 2016. "Improvement of the energy generation by pressure retarded osmosis," Energy, Elsevier, vol. 116(P2), pages 1323-1333.
    6. Bargiacchi, Eleonora & Orciuolo, Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2020. "Use of Pressure-Retarded-Osmosis to reduce Reverse Osmosis energy consumption by exploiting hypersaline flows," Energy, Elsevier, vol. 211(C).
    7. Maisonneuve, Jonathan & Laflamme, Claude B. & Pillay, Pragasen, 2016. "Experimental investigation of pressure retarded osmosis for renewable energy conversion: Towards increased net power," Applied Energy, Elsevier, vol. 164(C), pages 425-435.
    8. Touati, Khaled & Salamanca, Jacobo & Tadeo, Fernando & Elfil, Hamza, 2017. "Energy recovery from two-stage SWRO plant using PRO without external freshwater feed stream: Theoretical analysis," Renewable Energy, Elsevier, vol. 105(C), pages 84-95.
    9. Bassel A. Abdelkader & Mostafa H. Sharqawy, 2022. "Challenges Facing Pressure Retarded Osmosis Commercialization: A Short Review," Energies, MDPI, vol. 15(19), pages 1-24, October.
    10. Abdelkader, Bassel A. & Navas, Daniel Ruiz & Sharqawy, Mostafa H., 2023. "A novel spiral wound module design for harvesting salinity gradient energy using pressure retarded osmosis," Renewable Energy, Elsevier, vol. 203(C), pages 542-553.
    11. Maisonneuve, Jonathan & Chintalacheruvu, Sanjana, 2019. "Increasing osmotic power and energy with maximum power point tracking," Applied Energy, Elsevier, vol. 238(C), pages 683-695.
    12. Altaee, Ali & Cipolina, Andrea, 2019. "Modelling and optimization of modular system for power generation from a salinity gradient," Renewable Energy, Elsevier, vol. 141(C), pages 139-147.
    13. Ortega-Delgado, B. & Giacalone, F. & Cipollina, A. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G., 2019. "Boosting the performance of a Reverse Electrodialysis – Multi-Effect Distillation Heat Engine by novel solutions and operating conditions," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Mario Llamas-Rivas & Alejandro Pizano-Martínez & Claudio R. Fuerte-Esquivel & Luis R. Merchan-Villalba & José M. Lozano-García & Enrique A. Zamora-Cárdenas & Víctor J. Gutiérrez-Martínez, 2021. "Pressure Retarded Osmosis Power Units Modelling for Power Flow Analysis of Electric Distribution Networks," Energies, MDPI, vol. 14(20), pages 1-30, October.
    15. Endre Nagy & Ibrar Ibrar & Ali Braytee & Béla Iván, 2022. "Study of Pressure Retarded Osmosis Process in Hollow Fiber Membrane: Cylindrical Model for Description of Energy Production," Energies, MDPI, vol. 15(10), pages 1-23, May.
    16. Naguib, Maged Fouad & Maisonneuve, Jonathan & Laflamme, Claude B. & Pillay, Pragasen, 2015. "Modeling pressure-retarded osmotic power in commercial length membranes," Renewable Energy, Elsevier, vol. 76(C), pages 619-627.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2028-:d:161972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.