IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6307-d649066.html
   My bibliography  Save this article

Research on the State of Charge of Lithium-Ion Battery Based on the Fractional Order Model

Author

Listed:
  • Lin Su

    (Shandong Provincial Key Laboratory of Automotive Electronics Technology, Institute of Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China)

  • Guangxu Zhou

    (Shandong Provincial Key Laboratory of Automotive Electronics Technology, Institute of Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China)

  • Dairong Hu

    (Shandong Provincial Key Laboratory of Automotive Electronics Technology, Institute of Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China)

  • Yuan Liu

    (Shandong Provincial Key Laboratory of Automotive Electronics Technology, Institute of Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China)

  • Yunhai Zhu

    (Science and Technology Service Platform, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China)

Abstract

Accurate estimation of the state of charge (SOC) of lithium batteries is paramount to ensuring consistent battery pack operation. To improve SOC estimation accuracy and suppress colored noise in the system, a fractional order model based on an unscented Kalman filter and an H-infinity filter (FOUHIF) estimation algorithm was proposed. Firstly, the discrete state equation of a lithium battery was derived, as per the theory of fractional calculus. Then, the HPPC experiment and the PSO algorithm were used to identify the internal parameters of the second order RC and fractional order models, respectively. As discovered during working tests, the parameters identified via the fractional order model proved to be more accurate. Furthermore, the feasibility of using the FOUHIF algorithm was evaluated under the conditions of NEDC and UDDS, with obvious colored noise. Compared with the fractional order unscented Kalman filter (FOUKF) and integer order unscented Kalman filter (UKF) algorithms, the FOUHIF algorithm showed significant improvement in both the accuracy and robustness of the estimation, with maximum errors of 1.86% and 1.61% under the two working conditions, and a terminal voltage prediction error of no more than 5.29 mV.

Suggested Citation

  • Lin Su & Guangxu Zhou & Dairong Hu & Yuan Liu & Yunhai Zhu, 2021. "Research on the State of Charge of Lithium-Ion Battery Based on the Fractional Order Model," Energies, MDPI, vol. 14(19), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6307-:d:649066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ivan Pavlenko & Marek Ochowiak & Praveen Agarwal & Radosław Olszewski & Bernard Michałek & Andżelika Krupińska, 2021. "Improvement of Mathematical Model for Sedimentation Process," Energies, MDPI, vol. 14(15), pages 1-12, July.
    2. Yixing Chen & Deqing Huang & Qiao Zhu & Weiqun Liu & Congzhi Liu & Neng Xiong, 2017. "A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter," Energies, MDPI, vol. 10(9), pages 1-19, September.
    3. Zheng Liu & Xuanju Dang & Hanxu Sun, 2018. "Online State of Charge Estimation for Lithium-Ion Battery by Combining Incremental Autoregressive and Moving Average Modeling with Adaptive H-Infinity Filter," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-16, July.
    4. Mu, Hao & Xiong, Rui & Zheng, Hongfei & Chang, Yuhua & Chen, Zeyu, 2017. "A novel fractional order model based state-of-charge estimation method for lithium-ion battery," Applied Energy, Elsevier, vol. 207(C), pages 384-393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinfeng Jiang & Wenxiang Song & Hao Zhu & Yun Zhu & Yongzhi Du & Huichun Yin, 2022. "Extended Rauch–Tung–Striebel Smoother for the State of Charge Estimation of Lithium-Ion Batteries Based on an Enhanced Circuit Model," Energies, MDPI, vol. 15(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    2. Zhu, Qiao & Xu, Mengen & Liu, Weiqun & Zheng, Mengqian, 2019. "A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended kalman filter," Energy, Elsevier, vol. 187(C).
    3. Li, Yifeng & Bao, Jie & Skyllas-Kazacos, Maria & Akter, Md Parvez & Zhang, Xinan & Fletcher, John, 2019. "Studies on dynamic responses and impedance of the vanadium redox flow battery," Applied Energy, Elsevier, vol. 237(C), pages 91-102.
    4. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    5. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Jiang, Cong & Wang, Shunli & Wu, Bin & Fernandez, Carlos & Xiong, Xin & Coffie-Ken, James, 2021. "A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter," Energy, Elsevier, vol. 219(C).
    7. Zhongwei Zhang & Dan Zhou & Neng Xiong & Qiao Zhu, 2021. "Non-Fragile H ∞ Nonlinear Observer for State of Charge Estimation of Lithium-Ion Battery Based on a Fractional-Order Model," Energies, MDPI, vol. 14(16), pages 1-17, August.
    8. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    9. Ruifeng Zhang & Bizhong Xia & Baohua Li & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "Study on the Characteristics of a High Capacity Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion Battery—An Experimental Investigation," Energies, MDPI, vol. 11(9), pages 1-20, August.
    10. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
    12. Wang, Yujie & Li, Mince & Chen, Zonghai, 2020. "Experimental study of fractional-order models for lithium-ion battery and ultra-capacitor: Modeling, system identification, and validation," Applied Energy, Elsevier, vol. 278(C).
    13. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    14. Mehta, Rohit & Gupta, Amit, 2024. "Mathematical modelling of electrochemical, thermal and degradation processes in lithium-ion cells—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    16. Jiang, Yihui & Xu, Jun & Liu, Mengmeng & Mei, Xuesong, 2022. "An electromechanical coupling model-based state of charge estimation method for lithium-ion pouch battery modules," Energy, Elsevier, vol. 259(C).
    17. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).
    18. Sadiqa Jafari & Zeinab Shahbazi & Yung-Cheol Byun & Sang-Joon Lee, 2022. "Lithium-Ion Battery Estimation in Online Framework Using Extreme Gradient Boosting Machine Learning Approach," Mathematics, MDPI, vol. 10(6), pages 1-17, March.
    19. Tang, Aihua & Huang, Yukun & Liu, Shangmei & Yu, Quanqing & Shen, Weixiang & Xiong, Rui, 2023. "A novel lithium-ion battery state of charge estimation method based on the fusion of neural network and equivalent circuit models," Applied Energy, Elsevier, vol. 348(C).
    20. Wu, Chunling & Hu, Wenbo & Meng, Jinhao & Xu, Xianfeng & Huang, Xinrong & Cai, Lei, 2023. "State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6307-:d:649066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.