IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6281-d648697.html
   My bibliography  Save this article

Experimental Characterization of Lithium-Ion Cell Strain Using Laser Sensors

Author

Listed:
  • Davide Clerici

    (Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso duca degli Abruzzi 24, 10129 Torino, Italy)

  • Francesco Mocera

    (Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso duca degli Abruzzi 24, 10129 Torino, Italy)

  • Aurelio Somà

    (Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

The characterization of thickness change during operation of LFP/Graphite prismatic batteries is presented in this work. In this regard, current rate dependence, hysteresis behaviour between charge and discharge and correlation with phase changes are deepened. Experimental tests are carried out with a battery testing equipment correlated with optical laser sensors to evaluate swelling. Furthermore, thickness change is computed analytically with a mathematical model based on lattice parameters of the crystal structures of active materials. The results of the model are validated with experimental data. Thickness change is able to capture variations of the internal structure of the battery, referred to as phase change, characteristic of a certain state of charge. Furthermore, phase change shift is a characteristic of battery ageing. Being able to capture these properties with sensors mounted on the external surface the cell is a key feature for improving state of charge and state of health estimation in battery management system.

Suggested Citation

  • Davide Clerici & Francesco Mocera & Aurelio Somà, 2021. "Experimental Characterization of Lithium-Ion Cell Strain Using Laser Sensors," Energies, MDPI, vol. 14(19), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6281-:d:648697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davide Clerici & Francesco Mocera & Aurelio Somà, 2020. "Analytical Solution for Coupled Diffusion Induced Stress Model for Lithium-Ion Battery," Energies, MDPI, vol. 13(7), pages 1-20, April.
    2. Ximing Cheng & Michael Pecht, 2017. "In Situ Stress Measurement Techniques on Li-ion Battery Electrodes: A Review," Energies, MDPI, vol. 10(5), pages 1-19, April.
    3. Francesco Mocera & Aurelio Somà, 2020. "Analysis of a Parallel Hybrid Electric Tractor for Agricultural Applications," Energies, MDPI, vol. 13(12), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tessa Krause & Daniel Nusko & Luciana Pitta Bauermann & Matthias Vetter & Marcel Schäfer & Carlo Holly, 2024. "Methods for Quantifying Expansion in Lithium-Ion Battery Cells Resulting from Cycling: A Review," Energies, MDPI, vol. 17(7), pages 1-39, March.
    2. Francesca Pistorio & Davide Clerici & Francesco Mocera & Aurelio Somà, 2022. "Review on the Experimental Characterization of Fracture in Active Material for Lithium-Ion Batteries," Energies, MDPI, vol. 15(23), pages 1-47, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Pistorio & Davide Clerici & Francesco Mocera & Aurelio Somà, 2022. "Review on the Experimental Characterization of Fracture in Active Material for Lithium-Ion Batteries," Energies, MDPI, vol. 15(23), pages 1-47, December.
    2. Yi Du & Jiayan Zhou & Zhuofan He & Yandong Sun & Ming Kong, 2022. "A Dual-Harmonic Pole-Changing Motor with Split Permanent Magnet Pole," Energies, MDPI, vol. 15(20), pages 1-14, October.
    3. Han, Gaoce & Yan, Jize & Guo, Zhen & Greenwood, David & Marco, James & Yu, Yifei, 2021. "A review on various optical fibre sensing methods for batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Zhen Zhu & Lingxin Zeng & Long Chen & Rong Zou & Yingfeng Cai, 2022. "Fuzzy Adaptive Energy Management Strategy for a Hybrid Agricultural Tractor Equipped with HMCVT," Agriculture, MDPI, vol. 12(12), pages 1-21, November.
    5. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    6. Li, Xian-zhe & Zhang, Ming-zhu & Yan, Xiang-hai & Liu, Meng-nan & Xu, Li-you, 2023. "Power allocation strategy for fuel cell distributed drive electric tractor based on adaptive multi-resolution analysis theory," Energy, Elsevier, vol. 284(C).
    7. Francesco Mocera & Valerio Martini & Aurelio Somà, 2022. "Comparative Analysis of Hybrid Electric Architectures for Specialized Agricultural Tractors," Energies, MDPI, vol. 15(5), pages 1-22, March.
    8. Davide Clerici & Francesco Mocera & Aurelio Somà, 2020. "Shape Influence of Active Material Micro-Structure on Diffusion and Contact Stress in Lithium-Ion Batteries," Energies, MDPI, vol. 14(1), pages 1-18, December.
    9. Lysander De Sutter & Gert Berckmans & Mario Marinaro & Jelle Smekens & Yousef Firouz & Margret Wohlfahrt-Mehrens & Joeri Van Mierlo & Noshin Omar, 2018. "Comprehensive Aging Analysis of Volumetric Constrained Lithium-Ion Pouch Cells with High Concentration Silicon-Alloy Anodes," Energies, MDPI, vol. 11(11), pages 1-21, October.
    10. Aleksandra Fortier & Max Tsao & Nick D. Williard & Yinjiao Xing & Michael G. Pecht, 2017. "Preliminary Study on Integration of Fiber Optic Bragg Grating Sensors in Li-Ion Batteries and In Situ Strain and Temperature Monitoring of Battery Cells," Energies, MDPI, vol. 10(7), pages 1-11, June.
    11. Claudio Rossi & Davide Pontara & Carlo Falcomer & Marco Bertoldi & Riccardo Mandrioli, 2021. "A Hybrid–Electric Driveline for Agricultural Tractors Based on an e-CVT Power-Split Transmission," Energies, MDPI, vol. 14(21), pages 1-23, October.
    12. Laura Albero Blanquer & Florencia Marchini & Jan Roman Seitz & Nour Daher & Fanny Bétermier & Jiaqiang Huang & Charlotte Gervillié & Jean-Marie Tarascon, 2022. "Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Salvatore Martelli & Francesco Mocera & Aurelio Somà, 2023. "Carbon Footprint of an Orchard Tractor through a Life-Cycle Assessment Approach," Agriculture, MDPI, vol. 13(6), pages 1-22, June.
    14. Ugnė Koletė Medževeprytė & Rolandas Makaras & Vaidas Lukoševičius & Sigitas Kilikevičius, 2023. "Application and Efficiency of a Series-Hybrid Drive for Agricultural Use Based on a Modified Version of the World Harmonized Transient Cycle," Energies, MDPI, vol. 16(14), pages 1-16, July.
    15. Davide Clerici & Francesco Mocera & Aurelio Somà, 2020. "Analytical Solution for Coupled Diffusion Induced Stress Model for Lithium-Ion Battery," Energies, MDPI, vol. 13(7), pages 1-20, April.
    16. Jiang, Yihui & Xu, Jun & Hou, Wenlong & Mei, Xuesong, 2021. "A stack pressure based equivalent mechanical model of lithium-ion pouch batteries," Energy, Elsevier, vol. 221(C).
    17. Valerio Martini & Francesco Mocera & Aurelio Somà, 2022. "Numerical Investigation of a Fuel Cell-Powered Agricultural Tractor," Energies, MDPI, vol. 15(23), pages 1-19, November.
    18. Anyu Cheng & Yi Xin & Hang Wu & Lixin Yang & Banghuai Deng, 2023. "A Review of Sensor Applications in Electric Vehicle Thermal Management Systems," Energies, MDPI, vol. 16(13), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6281-:d:648697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.