IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6221-d646203.html
   My bibliography  Save this article

Battery Model Identification Approach for Electric Forklift Application

Author

Listed:
  • Cynthia Thamires da Silva

    (PEA—Polytechnic School (POLI-USP), University of São Paulo, 05508-010 São Paulo, Brazil)

  • Bruno Martin de Alcântara Dias

    (PEA—Polytechnic School (POLI-USP), University of São Paulo, 05508-010 São Paulo, Brazil)

  • Rui Esteves Araújo

    (INESC TEC, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • Eduardo Lorenzetti Pellini

    (PEA—Polytechnic School (POLI-USP), University of São Paulo, 05508-010 São Paulo, Brazil)

  • Armando Antônio Maria Laganá

    (PEA—Polytechnic School (POLI-USP), University of São Paulo, 05508-010 São Paulo, Brazil)

Abstract

Electric forklifts are extremely important for the world’s logistics and industry. Lead acid batteries are the most common energy storage system for electric forklifts; however, to ensure more energy efficiency and less environmental pollution, they are starting to use lithium batteries. All lithium batteries need a battery management system (BMS) for safety, long life cycle and better efficiency. This system is capable to estimate the battery state of charge, state of health and state of function, but those cannot be measured directly and must be estimated indirectly using battery models. Consequently, accurate battery models are essential for implementation of advance BMS and enhance its accuracy. This work presents a comparison between four different models, four different types of optimizers algorithms and seven different experiment designs. The purpose is defining the best model, with the best optimizer, and the best experiment design for battery parameter estimation. This best model is intended for a state of charge estimation on a battery applied on an electric forklift. The nonlinear grey box model with the nonlinear least square method presented a better result for this purpose. This model was estimated with the best experiment design which was defined considering the fit to validation data, the parameter standard deviation and the output variance. With this approach, it was possible to reach more than 80% of fit in different validation data, a non-biased and little prediction error and a good one-step ahead result.

Suggested Citation

  • Cynthia Thamires da Silva & Bruno Martin de Alcântara Dias & Rui Esteves Araújo & Eduardo Lorenzetti Pellini & Armando Antônio Maria Laganá, 2021. "Battery Model Identification Approach for Electric Forklift Application," Energies, MDPI, vol. 14(19), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6221-:d:646203
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6221/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6221/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ngoc-Tham Tran & Abdul Basit Khan & Thanh-Tung Nguyen & Dae-Wook Kim & Woojin Choi, 2018. "SOC Estimation of Multiple Lithium-Ion Battery Cells in a Module Using a Nonlinear State Observer and Online Parameter Estimation," Energies, MDPI, vol. 11(7), pages 1-14, June.
    2. Théophile Paul & Tedjani Mesbahi & Sylvain Durand & Damien Flieller & Wilfried Uhring, 2020. "Sizing of Lithium-Ion Battery/Supercapacitor Hybrid Energy Storage System for Forklift Vehicle," Energies, MDPI, vol. 13(17), pages 1-18, September.
    3. Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
    4. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    5. Oliver Lass & Stefan Volkwein, 2015. "Parameter identification for nonlinear elliptic-parabolic systems with application in lithium-ion battery modeling," Computational Optimization and Applications, Springer, vol. 62(1), pages 217-239, September.
    6. Daniele Gallo & Carmine Landi & Mario Luiso & Rosario Morello, 2013. "Optimization of Experimental Model Parameter Identification for Energy Storage Systems," Energies, MDPI, vol. 6(9), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lluís Trilla & Lluc Canals Casals & Jordi Jacas & Pol Paradell, 2022. "Dual Extended Kalman Filter for State of Charge Estimation of Lithium–Sulfur Batteries," Energies, MDPI, vol. 15(19), pages 1-14, September.
    2. Cynthia Thamires da Silva & Bruno Martin de Alcântara Dias & Rui Esteves Araújo & Eduardo Lorenzetti Pellini & Armando Antônio Maria Laganá, 2023. "Two-Outputs Nonlinear Grey Box Model for Lithium-Ion Batteries," Energies, MDPI, vol. 16(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    2. Hegazy Rezk & A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed, 2023. "A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    3. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    4. Richard Bustos & Stephen Andrew Gadsden & Pawel Malysz & Mohammad Al-Shabi & Shohel Mahmud, 2022. "Health Monitoring of Lithium-Ion Batteries Using Dual Filters," Energies, MDPI, vol. 15(6), pages 1-16, March.
    5. Taysa Millena Banik Marques & João Lucas Ferreira dos Santos & Diego Solak Castanho & Mariane Bigarelli Ferreira & Sergio L. Stevan & Carlos Henrique Illa Font & Thiago Antonini Alves & Cassiano Moro , 2023. "An Overview of Methods and Technologies for Estimating Battery State of Charge in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-18, June.
    6. Adrian Chmielewski & Jakub Możaryn & Piotr Piórkowski & Krzysztof Bogdziński, 2018. "Comparison of NARX and Dual Polarization Models for Estimation of the VRLA Battery Charging/Discharging Dynamics in Pulse Cycle," Energies, MDPI, vol. 11(11), pages 1-28, November.
    7. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    8. Alexandros Nikolian & Yousef Firouz & Rahul Gopalakrishnan & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2016. "Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion," Energies, MDPI, vol. 9(5), pages 1-23, May.
    9. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    10. Luna, M. & Di Piazza, M.C. & La Tona, G. & Accetta, A. & Pucci, M., 2021. "Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 48-65.
    11. Alexander Koch & Lorenzo Nicoletti & Thomas Herrmann & Markus Lienkamp, 2022. "Implementation and Analyses of an Eco-Driving Algorithm for Different Battery Electric Powertrain Topologies Based on a Split Loss Integration Approach," Energies, MDPI, vol. 15(15), pages 1-29, July.
    12. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    13. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    14. Kotub Uddin & Alessandro Picarelli & Christopher Lyness & Nigel Taylor & James Marco, 2014. "An Acausal Li-Ion Battery Pack Model for Automotive Applications," Energies, MDPI, vol. 7(9), pages 1-26, August.
    15. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    16. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    17. Noshin Omar & Peter Van den Bossche & Thierry Coosemans & Joeri Van Mierlo, 2013. "Peukert Revisited—Critical Appraisal and Need for Modification for Lithium-Ion Batteries," Energies, MDPI, vol. 6(11), pages 1-17, October.
    18. Poolla, Chaitanya & Ishihara, Abraham K. & Milito, Rodolfo, 2019. "Designing near-optimal policies for energy management in a stochastic environment," Applied Energy, Elsevier, vol. 242(C), pages 1725-1737.
    19. Chivon Choeung & Meng Leang Kry & Young Il Lee, 2018. "Robust Tracking Control of a Three-Phase Charger under Unbalanced Grid Conditions," Energies, MDPI, vol. 11(12), pages 1-16, December.
    20. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6221-:d:646203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.