IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6216-d646099.html
   My bibliography  Save this article

Advanced Discretisation and Visualisation Methods for Performance Profiling of Wind Turbines

Author

Listed:
  • Michiel Dhont

    (EluciDATA Lab of Sirris, Bd A. Reyerslaan 80, 1030 Brussels, Belgium
    Department of Electronics and Information Processing (ETRO), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium)

  • Elena Tsiporkova

    (EluciDATA Lab of Sirris, Bd A. Reyerslaan 80, 1030 Brussels, Belgium)

  • Veselka Boeva

    (Blekinge Institute of Technology, Blekinge Tekniska Högskola, 371 79 Karlskrona, Sweden)

Abstract

Wind turbines are typically organised as a fleet in a wind park, subject to similar, but varying, environmental conditions. This makes it possible to assess and benchmark a turbine’s output performance by comparing it to the other assets in the fleet. However, such a comparison cannot be performed straightforwardly on time series production data since the performance of a wind turbine is affected by a diverse set of factors (e.g., weather conditions). All these factors also produce a continuous stream of data, which, if discretised in an appropriate fashion, might allow us to uncover relevant insights into the turbine’s operations and behaviour. In this paper, we exploit the outcome of two inherently different discretisation approaches by statistical and visual analytics. As the first discretisation method, a complex layered integration approach is used. The DNA-like outcome allows us to apply advanced visual analytics, facilitating insightful operating mode monitoring. The second discretisation approach is applying a novel circular binning approach, capitalising on the circular nature of the angular variables. The resulting bins are then used to construct circular power maps and extract prototypical profiles via non-negative matrix factorisation, enabling us to detect anomalies and perform production forecasts.

Suggested Citation

  • Michiel Dhont & Elena Tsiporkova & Veselka Boeva, 2021. "Advanced Discretisation and Visualisation Methods for Performance Profiling of Wind Turbines," Energies, MDPI, vol. 14(19), pages 1-30, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6216-:d:646099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6216/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binbin Zhang & Jun Liu, 2019. "Wind Turbine Clustering Algorithm of Large Offshore Wind Farms considering Wake Effects," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-7, September.
    2. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    3. Raymond Byrne & Davide Astolfi & Francesco Castellani & Neil J. Hewitt, 2020. "A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Astolfi & Francesco Castellani, 2022. "Editorial on the Special Issue “Wind Turbine Monitoring through Operation Data Analysis”," Energies, MDPI, vol. 15(10), pages 1-4, May.
    2. Volodimir Holovko & Volodimir Kohanevich & Mikola Shikhailov & Artem Donets & Mihailo Maksymeniuk & Olena Sukmaniuk & Savelii Kukharets & Ryszard Konieczny & Adam Koniuszy & Barbara Dybek & Grzegorz W, 2022. "Unconventional Energy from an Electric Impulse Heater Combined with a Wind Turbine," Energies, MDPI, vol. 15(23), pages 1-12, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    2. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    3. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    4. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    5. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    6. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    7. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    8. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    9. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    10. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    11. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    12. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    13. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    14. Jingfeng Guo & Chao Zheng & Shanshan Li & Yutong Jia & Bin Liu, 2022. "BiInfGCN: Bilateral Information Augmentation of Graph Convolutional Networks for Recommendation," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    15. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    16. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    17. Lei, Da & Cheng, Long & Wang, Pengfei & Chen, Xuewu & Zhang, Lin, 2024. "Identifying service bottlenecks in public bikesharing flow networks," Journal of Transport Geography, Elsevier, vol. 116(C).
    18. Semi Min & Juyong Park, 2019. "Modeling narrative structure and dynamics with networks, sentiment analysis, and topic modeling," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-20, December.
    19. Zhang, Lifeng & Chao, Xiangrui & Qian, Qian & Jing, Fuying, 2022. "Credit evaluation solutions for social groups with poor services in financial inclusion: A technical forecasting method," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    20. Yi Yu & Jaeseung Baek & Ali Tosyali & Myong K. Jeong, 2024. "Robust asymmetric non-negative matrix factorization for clustering nodes in directed networks," Annals of Operations Research, Springer, vol. 341(1), pages 245-265, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6216-:d:646099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.