IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6013-d640352.html
   My bibliography  Save this article

FMEA and Risks Assessment for Thermochemical Energy Storage Systems Based on Carbonates

Author

Listed:
  • Andrés Carro

    (Departamento de Ingeniería Energética, Universidad de Sevilla, Camino de los Descubrimientos, 41092 Seville, Spain)

  • Ricardo Chacartegui

    (Departamento de Ingeniería Energética, Universidad de Sevilla, Camino de los Descubrimientos, 41092 Seville, Spain)

  • Carlos Tejada

    (VirtualMechanics, S.L., c/Arquitectura 1, 41015 Seville, Spain)

  • Georgios Gravanis

    (Chemical Process & Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), P.O. Box 60361, 57001 Thessaloniki, Greece)

  • Muhammad Eusha

    (TTZ Bremerhaven Am Lunedeich 12, 27572 Bremerhaven, Germany)

  • Voutetakis Spyridon

    (Chemical Process & Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), P.O. Box 60361, 57001 Thessaloniki, Greece)

  • Papadopoulou Simira

    (Chemical Process & Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), P.O. Box 60361, 57001 Thessaloniki, Greece)

  • Carlos Ortiz

    (Materials & Sustainability Group, Department of Engineering Universidad Loyola Andalucía, Avda. De las Universidades s/n, Dos Hermanas, 41704 Seville, Spain)

Abstract

Thermochemical energy storage systems from carbonates, mainly those based on calcium carbonate, have been gaining momentum in the last few years. However, despite the considerable interest in the process, the Technology Readiness Level (TRL) is still low. Therefore, facing the progressive development of the technology at different scales is essential to carry out a comprehensive risk assessment and a Failure Mode Effect and Analysis (FMEA) process to guarantee the safety and operation of the technology systems. In this study, the methodology was applied to a first-of-its-kind prototype, and it is a valuable tool for assessing safe design and operation and potential scaling up. The present work describes the methodology for carrying out these analyses to construct a kW-scale prototype of an energy storage system based on calcium carbonate. The main potential risks occur during the testing and operation stages (>50% of identified risks), being derived mainly from potential overheating in the reactors, failures in the control of the solar shape at the receiver, and potential failures of the control system. Through the assessment of Risk Priority Numbers (RPNs), it was identified that the issues requiring more attention are related to hot fluid path to avoid loss of heat transfer and potential damages (personal and on the facilities), mainly due to their probability to occur (>8 on a scale of 10). The results derived from the FMEA analysis show the need for specific control measures in reactors, especially in the calciner, with high operation temperatures (1000 °C) and potential effects of overheating and corrosion.

Suggested Citation

  • Andrés Carro & Ricardo Chacartegui & Carlos Tejada & Georgios Gravanis & Muhammad Eusha & Voutetakis Spyridon & Papadopoulou Simira & Carlos Ortiz, 2021. "FMEA and Risks Assessment for Thermochemical Energy Storage Systems Based on Carbonates," Energies, MDPI, vol. 14(19), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6013-:d:640352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. André, Laurie & Abanades, Stéphane & Flamant, Gilles, 2016. "Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 703-715.
    2. Abdul Salam Khan & Bashir Salah & Dominik Zimon & Muhammad Ikram & Razaullah Khan & Catalin I. Pruncu, 2020. "A Sustainable Distribution Design for Multi-Quality Multiple-Cold-Chain Products: An Integrated Inspection Strategies Approach," Energies, MDPI, vol. 13(24), pages 1-25, December.
    3. Chacartegui, R. & Alovisio, A. & Ortiz, C. & Valverde, J.M. & Verda, V. & Becerra, J.A., 2016. "Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle," Applied Energy, Elsevier, vol. 173(C), pages 589-605.
    4. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    5. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
    6. Kearney, D. & Kelly, B. & Herrmann, U. & Cable, R. & Pacheco, J. & Mahoney, R. & Price, H. & Blake, D. & Nava, P. & Potrovitza, N., 2004. "Engineering aspects of a molten salt heat transfer fluid in a trough solar field," Energy, Elsevier, vol. 29(5), pages 861-870.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carro, A. & Chacartegui, R. & Ortiz, C. & Arcenegui-Troya, J. & Pérez-Maqueda, L.A. & Becerra, J.A., 2023. "Integration of calcium looping and calcium hydroxide thermochemical systems for energy storage and power production in concentrating solar power plants," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carro, A. & Chacartegui, R. & Ortiz, C. & Arcenegui-Troya, J. & Pérez-Maqueda, L.A. & Becerra, J.A., 2023. "Integration of calcium looping and calcium hydroxide thermochemical systems for energy storage and power production in concentrating solar power plants," Energy, Elsevier, vol. 283(C).
    2. Carro, A. & Chacartegui, R. & Ortiz, C. & Becerra, J.A., 2022. "Analysis of a thermochemical energy storage system based on the reversible Ca(OH)2/CaO reaction," Energy, Elsevier, vol. 261(PA).
    3. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Perez-Maqueda, L.A. & Giménez, P., 2019. "The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    5. Lisbona, Pilar & Bailera, Manuel & Hills, Thomas & Sceats, Mark & Díez, Luis I. & Romeo, Luis M., 2020. "Energy consumption minimization for a solar lime calciner operating in a concentrated solar power plant for thermal energy storage," Renewable Energy, Elsevier, vol. 156(C), pages 1019-1027.
    6. Evgenios Karasavvas & Athanasios Scaltsoyiannes & Andy Antzaras & Kyriakos Fotiadis & Kyriakos Panopoulos & Angeliki Lemonidou & Spyros Voutetakis & Simira Papadopoulou, 2020. "One-Dimensional Heterogeneous Reaction Model of a Drop-Tube Carbonator Reactor for Thermochemical Energy Storage Applications," Energies, MDPI, vol. 13(22), pages 1-24, November.
    7. Ortiz, C. & García-Luna, S. & Carro, A. & Carvajal, E. & Chacartegui, R., 2024. "Techno-economic analysis of a modular thermochemical battery for electricity storage based on calcium-looping," Applied Energy, Elsevier, vol. 367(C).
    8. Peng, Xinyue & Yao, Min & Root, Thatcher W. & Maravelias, Christos T., 2020. "Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 262(C).
    9. Bailera, Manuel & Pascual, Sara & Lisbona, Pilar & Romeo, Luis M., 2021. "Modelling calcium looping at industrial scale for energy storage in concentrating solar power plants," Energy, Elsevier, vol. 225(C).
    10. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    11. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
    12. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    13. Sara Pascual & Pilar Lisbona & Luis M. Romeo, 2022. "Thermal Energy Storage in Concentrating Solar Power Plants: A Review of European and North American R&D Projects," Energies, MDPI, vol. 15(22), pages 1-32, November.
    14. Chen, Chen & Kong, Mingmin & Zhou, Shuiqing & Sepulveda, Abdon E. & Hong, Hui, 2020. "Energy storage efficiency optimization of methane reforming with CO2 reactors for solar thermochemical energy storage☆," Applied Energy, Elsevier, vol. 266(C).
    15. Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
    16. Ma, Zhangke & Li, Yingjie & Zhang, Wan & Wang, Yuzhuo & Zhao, Jianli & Wang, Zeyan, 2020. "Energy storage and attrition performance of limestone under fluidization during CaO/CaCO3 cycles," Energy, Elsevier, vol. 207(C).
    17. Sarah Roger-Lund & Jo Darkwa & Mark Worall & John Calautit & Rabah Boukhanouf, 2024. "A Review of Thermochemical Energy Storage Systems for District Heating in the UK," Energies, MDPI, vol. 17(14), pages 1-28, July.
    18. Guillermo Martinez Castilla & Diana Carolina Guío-Pérez & Stavros Papadokonstantakis & David Pallarès & Filip Johnsson, 2021. "Techno-Economic Assessment of Calcium Looping for Thermochemical Energy Storage with CO 2 Capture," Energies, MDPI, vol. 14(11), pages 1-17, May.
    19. Imponenti, Luca & Albrecht, Kevin J. & Kharait, Rounak & Sanders, Michael D. & Jackson, Gregory S., 2018. "Redox cycles with doped calcium manganites for thermochemical energy storage to 1000 °C," Applied Energy, Elsevier, vol. 230(C), pages 1-18.
    20. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6013-:d:640352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.