IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5965-d639413.html
   My bibliography  Save this article

The Hydration and Volume Expansion Mechanisms of Modified Expansive Cements for Sustainable In-Situ Rock Fragmentation: A Review

Author

Listed:
  • Janethri Buddhipraba Liyanage

    (Department of Civil Engineering, Deep Earth Energy Laboratory, Monash University, Building 60, Melbourne, VIC 3800, Australia)

  • Ranjith Pathegama Gamage

    (Department of Civil Engineering, Deep Earth Energy Laboratory, Monash University, Building 60, Melbourne, VIC 3800, Australia)

Abstract

This review provides the hydration and volume expansion mechanism of expansive materials, with the goal of utilizing them in the development of sustainable mining methods. The main focus of the review will be the newly developed non-destructible rock fragmentation method, slow releasing energy material agent (SREMA), which is a modified soundless chemical demolition agent (SCDA). The review aims to address one of the main gaps in studies related to SREMA, by presenting a thorough understanding of the components of SREMA and their mechanisms of action, leading to volume expansion. Thus, this review would act as a guide for researchers working on using expansive materials for rock breaking. As many literatures have not been published regarding the recently discovered SREMA, studies on cements, expansive cements, and soundless chemical demolition agents (SCDA) were mainly considered. The chemical reactions and volume expansive processes of these materials have been studied and incorporated with the additives included in SREMA, to understand its behavior. Literature containing experimental studies analyzing the heat of hydration and microstructural changes have been mostly considered along with some of the heavily discussed hypotheses regarding the hydration of certain components, to predict the volume expansive mechanism of SREMA. Studies related to SREMA and other similar materials have shown drastic changes in the heats of hydration as the composition varies. Thus, SREMA has the capability of giving a wider range of expansive energies in diverse environmental conditions

Suggested Citation

  • Janethri Buddhipraba Liyanage & Ranjith Pathegama Gamage, 2021. "The Hydration and Volume Expansion Mechanisms of Modified Expansive Cements for Sustainable In-Situ Rock Fragmentation: A Review," Energies, MDPI, vol. 14(18), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5965-:d:639413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hall, Andrew & Scott, John Ashley & Shang, Helen, 2011. "Geothermal energy recovery from underground mines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 916-924, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    2. Chao Huan & Sha Zhang & Xiaoxuan Zhao & Shengteng Li & Bo Zhang & Yujiao Zhao & Pengfei Tao, 2021. "Thermal Performance of Cemented Paste Backfill Body Considering Its Slurry Sedimentary Characteristics in Underground Backfill Stopes," Energies, MDPI, vol. 14(21), pages 1-18, November.
    3. Ranka Stanković & Nikola Vulović & Nikola Lilić & Ivan Obradović & Radule Tošović & Milica Pešić-Georgiadis, 2016. "A WebGIS Decision Support System for Management of Abandoned Mines," Energies, MDPI, vol. 9(7), pages 1-14, July.
    4. Choi, Yosoon & Song, Jinyoung, 2017. "Review of photovoltaic and wind power systems utilized in the mining industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1386-1391.
    5. Rafael Rodríguez Díez & María B. Díaz-Aguado, 2014. "Estimating Limits for the Geothermal Energy Potential of Abandoned Underground Coal Mines: A Simple Methodology," Energies, MDPI, vol. 7(7), pages 1-20, July.
    6. Igliński, Bartłomiej & Buczkowski, Roman & Kujawski, Wojciech & Cichosz, Marcin & Piechota, Grzegorz, 2012. "Geoenergy in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2545-2557.
    7. Al-Habaibeh, Amin & Athresh, Anup P. & Parker, Keith, 2018. "Performance analysis of using mine water from an abandoned coal mine for heating of buildings using an open loop based single shaft GSHP system," Applied Energy, Elsevier, vol. 211(C), pages 393-402.
    8. Liu, Guokun & Ji, Dongxu & Qin, Yanzhou, 2023. "Geothermal-solar energy system integrated with hydrogen production and utilization modules for power supply-demand balancing," Energy, Elsevier, vol. 283(C).
    9. Bao, Ting & Liu, Zhen (Leo), 2019. "Thermohaline stratification modeling in mine water via double-diffusive convection for geothermal energy recovery from flooded mines," Applied Energy, Elsevier, vol. 237(C), pages 566-580.
    10. Guo, Chun & Wang, Mingnian & Yang, Lu & Sun, Zhitao & Zhang, Yunlong & Xu, Jianfeng, 2016. "A review of energy consumption and saving in extra-long tunnel operation ventilation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1558-1569.
    11. David B. Walls & David Banks & Adrian J. Boyce & Neil M. Burnside, 2021. "A Review of the Performance of Minewater Heating and Cooling Systems," Energies, MDPI, vol. 14(19), pages 1-33, September.
    12. Xu, Jiuping & Gao, Wen & Xie, Heping & Dai, Jingqi & Lv, Chengwei & Li, Meihui, 2018. "Integrated tech-paradigm based innovative approach towards ecological coal mining," Energy, Elsevier, vol. 151(C), pages 297-308.
    13. Menéndez, Javier & Ordóñez, Almudena & Álvarez, Rodrigo & Loredo, Jorge, 2019. "Energy from closed mines: Underground energy storage and geothermal applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 498-512.
    14. Menéndez, Javier & Ordónez, Almudena & Fernández-Oro, Jesús M. & Loredo, Jorge & Díaz-Aguado, María B., 2020. "Feasibility analysis of using mine water from abandoned coal mines in Spain for heating and cooling of buildings," Renewable Energy, Elsevier, vol. 146(C), pages 1166-1176.
    15. Michal Vokurka & Antonín Kunz, 2022. "Case Study of Using the Geothermal Potential of Mine Water for Central District Heating—The Rožná Deposit, Czech Republic," Sustainability, MDPI, vol. 14(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5965-:d:639413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.