IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7530-d940488.html
   My bibliography  Save this article

Shades of Green: Life Cycle Assessment of a Novel Small-Scale Vertical Axis Wind Turbine Tree

Author

Listed:
  • Duong Minh Ngoc

    (Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand
    Faculty of Economics, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam)

  • Montri Luengchavanon

    (Sustainable Energy Management Program, Wind Energy and Energy Storage Centre (WEESYC), Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand
    Cemme Center of Excellence in Metal and Materials Engineering, Prince of Songkla University, Hat Yai 90110, Thailand)

  • Pham Thi Anh

    (Institute for Environmental and Transport Studies, Ho Chi Minh City University of Transport, Ho Chi Minh City 72308, Vietnam)

  • Kim Humphreys

    (Independent Researcher, 5561, 5th Line, Alliston ON L9R 1V2, Canada)

  • Kuaanan Techato

    (Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand
    Program of Sustainable Energy Management, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand)

Abstract

Are small-scale wind turbines green? In this study, we perform a ‘cradle to grave’ life cycle assessment of a novel domestic-scale 10 kW vertical axis wind turbine tree which uses combined Savonius and H-Darrieus blades. Situated at a test site in Surat Thani, Thailand, SimaPro software was used to evaluate the environmental impact profile of the tree. Comparisons to the Thai grid mix were made, using both with and without end-of-life treatments. Impact profiles were calculated using wind data collected over two years at Surat Thani, and from wind data from a higher capacity factor ( C F ) site at Chiang Mai, Thailand. Energy and greenhouse gas payback times were estimated for both locations. The relative magnitudes of impacts were compared with environmental prices protocol, and we investigated reductions in impacts using three mitigative scenarios: changes to design, transportation and materials. The results showed that Chiang Mai had a C F = 7.58% and Surat Thani had a C F = 1.68%. A total of 9 out of 11 impacts were less than the grid values at Chiang Mai, but at Surat Thani, 9 of 11 impacts were more than the grid values. End-of-life treatments reduced impacts by an average of 11%. The tower and generator were majority contributors to impacts (average 69%). Greenhouse gas and energy payback times were 28.61 and 54.77 years, and 6.50 and 12.50 years for Surat Thani and Chiang Mai, respectively, with only the Chiang Mai times being less than the turbine’s estimated lifetime. Location changes mitigated impacts most, followed by design, transportation, and then materials. We make recommendations to further improve the environmental impact profile of this turbine tree.

Suggested Citation

  • Duong Minh Ngoc & Montri Luengchavanon & Pham Thi Anh & Kim Humphreys & Kuaanan Techato, 2022. "Shades of Green: Life Cycle Assessment of a Novel Small-Scale Vertical Axis Wind Turbine Tree," Energies, MDPI, vol. 15(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7530-:d:940488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hafiz Usman Ghani & Awais Mahmood & Asmat Ullah & Shabbir H. Gheewala, 2020. "Life Cycle Environmental and Economic Performance Analysis of Bagasse-Based Electricity in Pakistan," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    2. Ståle Navrud, 2017. "Possibilities and challenges in transfer and generalisation of monetary estimates for environmental and health benefits of regulating chemicals," OECD Environment Working Papers 119, OECD Publishing.
    3. Michaela Gkantou & Carlos Rebelo & Charalampos Baniotopoulos, 2020. "Life Cycle Assessment of Tall Onshore Hybrid Steel Wind Turbine Towers," Energies, MDPI, vol. 13(15), pages 1-21, August.
    4. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    5. Duong Minh Ngoc & Kuaanan Techato & Le Duc Niem & Nguyen Thi Hai Yen & Nguyen Van Dat & Montri Luengchavanon, 2021. "A Novel 10 kW Vertical Axis Wind Tree Design: Economic Feasibility Assessment," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    6. Wang, Like & Wang, Yuan & Du, Huibin & Zuo, Jian & Yi Man Li, Rita & Zhou, Zhihua & Bi, Fenfen & Garvlehn, McSimon P., 2019. "A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study," Applied Energy, Elsevier, vol. 249(C), pages 37-45.
    7. Matthew Gough & Mohamed Lotfi & Rui Castro & Amos Madhlopa & Azeem Khan & João P. S. Catalão, 2019. "Urban Wind Resource Assessment: A Case Study on Cape Town," Energies, MDPI, vol. 12(8), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamshid Ali Turi & Joanna Rosak-Szyrocka & Maryam Mansoor & Hira Asif & Ahad Nazir & Daniel Balsalobre-Lorente, 2022. "Assessing Wind Energy Projects Potential in Pakistan: Challenges and Way Forward," Energies, MDPI, vol. 15(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    2. Shalini Verma & Akshoy Ranjan Paul & Nawshad Haque, 2022. "Selected Environmental Impact Indicators Assessment of Wind Energy in India Using a Life Cycle Assessment," Energies, MDPI, vol. 15(11), pages 1-16, May.
    3. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    4. L. (Lisa B.) Ryan & Andrew J. Kelly & Ivan Petrov & Yulu Guo & Sarah La Monaca, 2018. "An Assessment of the Social Costs and Benefits of Vehicle Tax Reform in Ireland," Open Access publications 10197/9906, School of Economics, University College Dublin.
    5. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    6. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    7. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Gao, Chengkang & Zhu, Sulong & An, Nan & Na, Hongming & You, Huan & Gao, Chengbo, 2021. "Comprehensive comparison of multiple renewable power generation methods: A combination analysis of life cycle assessment and ecological footprint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Silvestri, Luca & De Santis, Michele, 2024. "Renewable-based load shifting system for demand response to enhance energy-economic-environmental performance of industrial enterprises," Applied Energy, Elsevier, vol. 358(C).
    11. González-Mares, Mariana Odemaris & Aradillas-García, Celia & Márquez-Mireles, Leonardo Ernesto & Monsiváis-Nava, Claudia Davinia & Bernal-Medina, Jesús Eduardo & Vargas-Morales, Juan Manuel & Portales, 2022. "Implementation and evaluation of an educational intervention to prevent risk factors for the development of non-communicable diseases in Mexican families of suburban communities," Evaluation and Program Planning, Elsevier, vol. 92(C).
    12. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    13. Yang, Kuang & Liao, Haifan & Xu, Bo & Chen, Qiuxiang & Hou, Zhenghui & Wang, Haijun, 2024. "Data-driven dryout prediction in helical-coiled once-through steam generator: A physics-informed approach leveraging the Buckingham Pi theorem," Energy, Elsevier, vol. 294(C).
    14. Diego Calabrese & Gioacchino Tricarico & Elia Brescia & Giuseppe Leonardo Cascella & Vito Giuseppe Monopoli & Francesco Cupertino, 2020. "Variable Structure Control of a Small Ducted Wind Turbine in the Whole Wind Speed Range Using a Luenberger Observer," Energies, MDPI, vol. 13(18), pages 1-23, September.
    15. Nurullah Yildiz & Hassan Hemida & Charalampos Baniotopoulos, 2021. "Life Cycle Assessment of a Barge-Type Floating Wind Turbine and Comparison with Other Types of Wind Turbines," Energies, MDPI, vol. 14(18), pages 1-19, September.
    16. Lenci, Stefano, 2023. "Along-wind and cross-wind coupled nonlinear oscillations of wind turbine towers close to 1:1 internal resonance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    17. Yingying Du & Hui Huang & Haibin Liu & Jingying Zhao & Qingzhou Yang, 2024. "Life Cycle Assessment of Abandonment of Onshore Wind Power for Hydrogen Production in China," Sustainability, MDPI, vol. 16(13), pages 1-25, July.
    18. Ali Akbar Firoozi & Farzad Hejazi & Ali Asghar Firoozi, 2024. "Advancing Wind Energy Efficiency: A Systematic Review of Aerodynamic Optimization in Wind Turbine Blade Design," Energies, MDPI, vol. 17(12), pages 1-30, June.
    19. Zhang, Qianxiao & Shah, Syed Ale Raza & Yang, Ling, 2022. "Modeling the effect of disaggregated renewable energies on ecological footprint in E5 economies: Do economic growth and R&D matter?," Applied Energy, Elsevier, vol. 310(C).
    20. Petar Sarajcev & Antun Meglic & Ranko Goic, 2021. "Lightning Overvoltage Protection of Step-Up Transformer Inside a Nacelle of Onshore New-Generation Wind Turbines," Energies, MDPI, vol. 14(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7530-:d:940488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.