IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5683-d632400.html
   My bibliography  Save this article

Combining Dual Fluidized Bed and High-Temperature Gas-Cooled Reactor for Co-Producing Hydrogen and Synthetic Natural Gas by Biomass Gasification

Author

Listed:
  • Yangping Zhou

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

  • Zhengwei Gu

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

  • Yujie Dong

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

  • Fangzhou Xu

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

  • Zuoyi Zhang

    (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

Abstract

Biomass gasification to produce burnable gas now attracts an increasing interest for production flexibility in the renewable energy system. However, the biomass gasification technology using dual fluidized bed which is most suitable for burnable gas production still encounters problems of low production efficiency and high production cost. Here, we proposed a large-scale biomass gasification system to combine dual fluidized bed and high-temperature gas-cooled reactor (HTR) for co-production of hydrogen and synthetic natural gas (SNG). The design of high-temperature gas-cooled reactor biomass gasification (HTR-BiGas) consists of one steam supply module to heat inlet steam of the gasifier by HTR and ten biomass gasification modules to co-produce 2000 MW th hydrogen and SNG by gasifying the unpretreated biomass. Software for calculating the mass and energy balances of biomass gasification was developed and validated by the experiment results on the Gothenburg biomass gasification plant. The preliminary economic evaluation showed that HTR-BiGas and the other two designs, electric auxiliary heating and increasing recirculated product gas, are economically comparative with present mainstream production techniques and the imported natural gas in China. HTR-BiGas is the best, with production costs of hydrogen and SNG around 1.6 $/kg and 0.43 $/Nm 3 , respectively. These designs mainly benefit from proper production efficiencies with low fuel-related costs. Compared with HTR-BiGas, electric auxiliary heating is hurt by the higher electric charge and the shortcoming of increasing recirculated product gas is its lower total production. Future works to improve the efficiency and economy of HTR-BiGas and to construct related facilities are introduced.

Suggested Citation

  • Yangping Zhou & Zhengwei Gu & Yujie Dong & Fangzhou Xu & Zuoyi Zhang, 2021. "Combining Dual Fluidized Bed and High-Temperature Gas-Cooled Reactor for Co-Producing Hydrogen and Synthetic Natural Gas by Biomass Gasification," Energies, MDPI, vol. 14(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5683-:d:632400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bruck, Maira & Sandborn, Peter & Goudarzi, Navid, 2018. "A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs)," Renewable Energy, Elsevier, vol. 122(C), pages 131-139.
    2. Lorenzo Bolfo & Francesco Devia & Guglielmo Lomonaco, 2021. "Nuclear Hydrogen Production: Modeling and Preliminary Optimization of a Helical Tube Heat Exchanger," Energies, MDPI, vol. 14(11), pages 1-24, May.
    3. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    4. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    5. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    2. Tantau Adrian & Niculescu Elena, 2022. "The role of Power Purchase Agreements for the promotion of green energy and the transition to a zero carbon economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 16(1), pages 1237-1245, August.
    3. Alvaro Rodríguez-Prieto & Ana María Camacho & Carlos Mendoza & John Kickhofel & Guglielmo Lomonaco, 2021. "Evolution of Standardized Specifications on Materials, Manufacturing and In-Service Inspection of Nuclear Reactor Vessels," Sustainability, MDPI, vol. 13(19), pages 1-25, September.
    4. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    5. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    7. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    8. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    9. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    10. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    11. Hegazy Rezk & Mokhtar Aly & Rania M. Ghoniem, 2023. "Robust Fuzzy Logic MPPT Using Gradient-Based Optimization for PEMFC Power System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    12. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    13. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Kim, Sang-Kyung & Lee, Jay H., 2024. "Optimizing green hydrogen systems: Balancing economic viability and reliability in the face of supply-demand volatility," Applied Energy, Elsevier, vol. 368(C).
    14. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    15. Matteo Fermeglia & Paolo Bevilacqua & Claudia Cafaro & Paolo Ceci & Antonio Fardelli, 2020. "Legal Pathways to Coal Phase-Out in Italy in 2025," Energies, MDPI, vol. 13(21), pages 1-22, October.
    16. Lee, Timothy & Fu, Jintao & Basile, Victoria & Corsi, John S. & Wang, Zeyu & Detsi, Eric, 2020. "Activated alumina as value-added byproduct from the hydrolysis of hierarchical nanoporous aluminum with pure water to generate hydrogen fuel," Renewable Energy, Elsevier, vol. 155(C), pages 189-196.
    17. Joanna Wyrobek & Łukasz Popławski & Maria Dzikuć, 2021. "Analysis of Financial Problems of Wind Farms in Poland," Energies, MDPI, vol. 14(5), pages 1-28, February.
    18. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    19. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    20. Yang, Ju-Ying & Dodge, Jennifer, 2024. "Local energy transitions as process: How contract management problems stymie a city's sustainable transition to renewable energy," Energy Policy, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5683-:d:632400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.