IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10800-d901682.html
   My bibliography  Save this article

A Thorough Emission-Cost Analysis of the Gradual Replacement of Carbon-Rich Fuels with Carbon-Free Energy Carriers in Modern Power Plants: The Case of Cyprus

Author

Listed:
  • Pavlos Nikolaidis

    (Department of Electrical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus)

  • Andreas Poullikkas

    (Cyprus Energy Regulatory Authority, 1305 Nicosia, Cyprus)

Abstract

Global efforts towards de-carbonization give rise to remarkable energy challenges, which include renewable energy penetration increase and intermediate energy carriers for a sustainable transition. In order to reduce the dependence on fossil fuels, alternative sources are considered by commodities to satisfy their increasing electricity demand, as a consequence of a rise in population and the quantity of residential appliances in forthcoming years. The near-term trends appear to be in fuel and emission reduction techniques through the integration of carbon capture and storage and more efficient energy carriers, exploiting alternative energy sources, such as natural gas and hydrogen. Formulating both the fuel consumption and emission released, the obtained experimental results showed that the total production cost can be reduced by making use of natural gas for the transition towards 2035’s targets. Maximum profits will be achieved with hydrogen as the only fuel in modern power plants by 2050. In this way, the lowest electricity production can be achieved as well as the elimination of carbon dioxide emissions. Since the integration of renewable energy resources in the sectors of electricity, heating/cooling and transportation will continuously be increased, alternative feedstocks can serve as primary inputs and contribute to production cost profits, improved utilization factors and further environmental achievements.

Suggested Citation

  • Pavlos Nikolaidis & Andreas Poullikkas, 2022. "A Thorough Emission-Cost Analysis of the Gradual Replacement of Carbon-Rich Fuels with Carbon-Free Energy Carriers in Modern Power Plants: The Case of Cyprus," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10800-:d:901682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10800/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10800/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    2. Pavlos Nikolaidis & Harris Partaourides, 2021. "A Model Predictive Control for the Dynamical Forecast of Operating Reserves in Frequency Regulation Services," Forecasting, MDPI, vol. 3(1), pages 1-14, March.
    3. Hadjipetrou, Stylianos & Liodakis, Stelios & Sykioti, Anastasia & Katikas, Loukas & Park, No-Wook & Kalogirou, Soteris & Akylas, Evangelos & Kyriakidis, Phaedon, 2022. "Evaluating the suitability of Sentinel-1 SAR data for offshore wind resource assessment around Cyprus," Renewable Energy, Elsevier, vol. 182(C), pages 1228-1239.
    4. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
    5. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    6. Kenneth Gillingham & James H. Stock, 2018. "The Cost of Reducing Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 53-72, Fall.
    7. Nikolaidis, Pavlos & Poullikkas, Andreas, 2021. "A novel cluster-based spinning reserve dynamic model for wind and PV power reinforcement," Energy, Elsevier, vol. 234(C).
    8. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    9. Ćosić, Boris & Krajačić, Goran & Duić, Neven, 2012. "A 100% renewable energy system in the year 2050: The case of Macedonia," Energy, Elsevier, vol. 48(1), pages 80-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Vinagre Díaz, Juan José & Wilby, Mark Richard & Rodríguez González, Ana Belén, 2015. "The wasted energy: A metric to set up appropriate targets in our path towards fully renewable energy systems," Energy, Elsevier, vol. 90(P1), pages 900-909.
    4. Katsanevakis, Markos & Stewart, Rodney A. & Lu, Junwei, 2017. "Aggregated applications and benefits of energy storage systems with application-specific control methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 719-741.
    5. Veigas, M. & Ramos, V. & Iglesias, G., 2014. "A wave farm for an island: Detailed effects on the nearshore wave climate," Energy, Elsevier, vol. 69(C), pages 801-812.
    6. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    7. Saikia, Papumoni & Das, Nipankumar & Buragohain, Mrinal, 2024. "Robust energy storage system for stable in wind and solar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    8. Jiashen Teh, 2018. "Adequacy Assessment of Wind Integrated Generating Systems Incorporating Demand Response and Battery Energy Storage System," Energies, MDPI, vol. 11(10), pages 1-12, October.
    9. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.
    10. Grujić, Miodrag & Ivezić, Dejan & Živković, Marija, 2014. "Application of multi-criteria decision-making model for choice of the optimal solution for meeting heat demand in the centralized supply system in Belgrade," Energy, Elsevier, vol. 67(C), pages 341-350.
    11. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    12. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    13. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    14. Kwon, Pil Seok & Østergaard, Poul Alberg, 2013. "Priority order in using biomass resources – Energy systems analyses of future scenarios for Denmark," Energy, Elsevier, vol. 63(C), pages 86-94.
    15. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    16. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    17. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    18. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    19. Ishaq, H. & Dincer, I., 2021. "Comparative assessment of renewable energy-based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10800-:d:901682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.