IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5605-d630650.html
   My bibliography  Save this article

Frequency Control of Large-Scale Interconnected Power Systems via Battery Integration: A Comparison between the Hybrid Battery Model and WECC Model

Author

Listed:
  • Roghieh Abdollahi Biroon

    (Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA)

  • Pierluigi Pisu

    (Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA)

  • David Schoenwald

    (Sandia National Laboratories, Albuquerque, NM 87123, USA)

Abstract

The increasing penetration of renewable energy sources in power grids highlights the role of battery energy storage systems (BESSs) in enhancing the stability and reliability of electricity. A key challenge with the renewables’, specially the BESSs, integration into the power system is the lack of proper dynamic models and their application in power system analyses. The control design strategy mainly depends on the system dynamics which underlines the importance of the system accurate dynamic modeling. Moreover, control design for the power system is a complicated issue due to its complexity and inter-connectivity, which makes the application of distributed control to improve the stability of a large-scale power system inevitable. This paper presents an optimal distributed control design for the interconnected systems to suppress the effects of small disturbances in the power system employing utility-scale batteries based on existing battery models. The control strategy is applied to two dynamic models of the battery: hybrid model and Western electricity coordinating council (WECC) model. The results show that (i) the smart scheduling of the batteries’ output reduces the inter-area oscillations and improves the stability of the power systems; (ii) the hybrid model of the battery is more user-friendly compared to the WECC model in power system analyses.

Suggested Citation

  • Roghieh Abdollahi Biroon & Pierluigi Pisu & David Schoenwald, 2021. "Frequency Control of Large-Scale Interconnected Power Systems via Battery Integration: A Comparison between the Hybrid Battery Model and WECC Model," Energies, MDPI, vol. 14(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5605-:d:630650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    2. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    3. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    4. Schachter, Jonathan A. & Mancarella, Pierluigi & Moriarty, John & Shaw, Rita, 2016. "Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation," Energy Policy, Elsevier, vol. 97(C), pages 439-449.
    5. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    6. Nolan, Sheila & Neu, Olivier & O’Malley, Mark, 2017. "Capacity value estimation of a load-shifting resource using a coupled building and power system model," Applied Energy, Elsevier, vol. 192(C), pages 71-82.
    7. Llaria, Alvaro & Curea, Octavian & Jiménez, Jaime & Camblong, Haritza, 2011. "Survey on microgrids: Unplanned islanding and related inverter control techniques," Renewable Energy, Elsevier, vol. 36(8), pages 2052-2061.
    8. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    9. Markard, Jochen & Hoffmann, Volker H., 2016. "Analysis of complementarities: Framework and examples from the energy transition," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 63-75.
    10. Hong, Jun & Johnstone, Cameron & Torriti, Jacopo & Leach, Matthew, 2012. "Discrete demand side control performance under dynamic building simulation: A heat pump application," Renewable Energy, Elsevier, vol. 39(1), pages 85-95.
    11. Jeroen Stragier & Laurence Hauttekeete & Lieven De Marez & Sven Claessens, 2013. "Towards More Energy Efficient Domestic Appliances? Measuring the Perception of Households on Smart Appliances," Energy & Environment, , vol. 24(5), pages 689-700, September.
    12. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    13. Rohde, Friederike & Quitzow, Leslie, 2021. "Digitale Energiezukünfte und ihre Wirkungsmacht: Visionen der smarten Energieversorgung zwischen Technikoptimismus und Nachhaltigkeit," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 189-211.
    14. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    15. Talaei, A. & Begg, K. & Jamasb, T., 2012. "The Large Scale Roll-Out of Electric Vehicles: The Effect on the Electricity Sector and CO2 Emissions," Cambridge Working Papers in Economics 1246, Faculty of Economics, University of Cambridge.
    16. Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
    17. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    18. Beibei Wang & Xiaocong Liu & Feng Zhu & Xiaoqing Hu & Wenlu Ji & Shengchun Yang & Ke Wang & Shuhai Feng, 2015. "Unit Commitment Model Considering Flexible Scheduling of Demand Response for High Wind Integration," Energies, MDPI, vol. 8(12), pages 1-22, December.
    19. Derakhshan, Ghasem & Shayanfar, Heidar Ali & Kazemi, Ahad, 2016. "The optimization of demand response programs in smart grids," Energy Policy, Elsevier, vol. 94(C), pages 295-306.
    20. Xu, Qingyang & Sun, Feihu & Cai, Qiran & Liu, Li-Jing & Zhang, Kun & Liang, Qiao-Mei, 2022. "Assessment of the influence of demand-side responses on high-proportion renewable energy system: An evidence of Qinghai, China," Renewable Energy, Elsevier, vol. 190(C), pages 945-958.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5605-:d:630650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.