IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5568-d629886.html
   My bibliography  Save this article

Thermodynamic Analysis of CNG Fast Filling Process of Composite Cylinder Type IV

Author

Listed:
  • Adam Saferna

    (Techplast Sp. z o.o., Krakowska 83 P, 34-120 Andrychów, Poland)

  • Piotr Saferna

    (Techplast Sp. z o.o., Krakowska 83 P, 34-120 Andrychów, Poland)

  • Szymon Kuczyński

    (Techplast Sp. z o.o., Krakowska 83 P, 34-120 Andrychów, Poland
    Gas Engineering Department, Drilling, Oil and Gas Faculty, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland)

  • Mariusz Łaciak

    (Gas Engineering Department, Drilling, Oil and Gas Faculty, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland)

  • Adam Szurlej

    (Gas Engineering Department, Drilling, Oil and Gas Faculty, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland)

  • Tomasz Włodek

    (Techplast Sp. z o.o., Krakowska 83 P, 34-120 Andrychów, Poland
    Gas Engineering Department, Drilling, Oil and Gas Faculty, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland)

Abstract

Due to ecological and economic advantages, natural gas is used as an alternative fuel in the transportation sector in the form of compressed natural gas (CNG) and liquefied natural gas (LNG). Development of infrastructure is necessary to popularize vehicles that use alternative fuels. Selected positive factors from EU countries supporting the development of the CNG market were discussed. The process of natural gas vehicle (NGV) fast filling is related to thermodynamic phenomena occurring in a tank. In this study, the first law of thermodynamics and continuity equations were applied to develop a theoretical model to investigate the effects of natural gas composition on the filling process and the final in-cylinder conditions of NGV on-board composite cylinder (type IV). Peng–Robinson equation of state (P-R EOS) was applied, and a lightweight composite tank (type IV) was considered as an adiabatic system. The authors have devised a model to determine the influence of natural gas composition on the selected thermodynamic parameters during fast filling: Joule–Thomson (J-T) coefficient, in-cylinder gas temperature, mass flow rate profiles, in-cylinder mass increase, natural gas density change, ambient temperature on the final natural gas temperature, influence of an ambient temperature on the amount of refueled natural gas mass. Results emphasize the importance of natural gas composition as an important parameter for the filling process of the NGV on-board composite tank (type IV).

Suggested Citation

  • Adam Saferna & Piotr Saferna & Szymon Kuczyński & Mariusz Łaciak & Adam Szurlej & Tomasz Włodek, 2021. "Thermodynamic Analysis of CNG Fast Filling Process of Composite Cylinder Type IV," Energies, MDPI, vol. 14(17), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5568-:d:629886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dorota Burchart-Korol & Magdalena Gazda-Grzywacz & Katarzyna Zarębska, 2020. "Research and Prospects for the Development of Alternative Fuels in the Transport Sector in Poland: A Review," Energies, MDPI, vol. 13(11), pages 1-16, June.
    2. Ogden, Joan & Jaffe, Amy Myers & Scheitrum, Daniel & McDonald, Zane & Miller, Marshall, 2018. "Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature," Energy Policy, Elsevier, vol. 115(C), pages 317-329.
    3. Szymon Kuczyński & Krystian Liszka & Mariusz Łaciak & Andrzej Olijnyk & Adam Szurlej, 2019. "Experimental Investigations and Operational Performance Analysis on Compressed Natural Gas Home Refueling System (CNG-HRS)," Energies, MDPI, vol. 12(23), pages 1-15, November.
    4. Khan, Muhammad Imran & Yasmin, Tabassum & Shakoor, Abdul, 2015. "Technical overview of compressed natural gas (CNG) as a transportation fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 785-797.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szymon Kuczyński & Krystian Liszka & Mariusz Łaciak & Andrzej Olijnyk & Adam Szurlej, 2019. "Experimental Investigations and Operational Performance Analysis on Compressed Natural Gas Home Refueling System (CNG-HRS)," Energies, MDPI, vol. 12(23), pages 1-15, November.
    2. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    3. Sharafian, Amir & Talebian, Hoda & Blomerus, Paul & Herrera, Omar & Mérida, Walter, 2017. "A review of liquefied natural gas refueling station designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 503-513.
    4. Li, Shunxi & Su, Bowen & St-Pierre, David L. & Sui, Pang-Chieh & Zhang, Guofang & Xiao, Jinsheng, 2017. "Decision-making of compressed natural gas station siting for public transportation: Integration of multi-objective optimization, fuzzy evaluating, and radar charting," Energy, Elsevier, vol. 140(P1), pages 11-17.
    5. Johannes Full & Silja Hohmann & Sonja Ziehn & Edgar Gamero & Tobias Schließ & Hans-Peter Schmid & Robert Miehe & Alexander Sauer, 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)," Energies, MDPI, vol. 16(13), pages 1-16, June.
    6. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    7. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    8. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    9. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    10. Alessia Amato & Konstantina Tsigkou & Alessandro Becci & Francesca Beolchini & Nicolò M. Ippolito & Francesco Ferella, 2023. "Life Cycle Assessment of Biomethane vs. Fossil Methane Production and Supply," Energies, MDPI, vol. 16(12), pages 1-18, June.
    11. Aydın, Hüseyin, 2021. "An innovative research on variable compression ratio in RCCI strategy on a power generator diesel engine using CNG-safflower biodiesel," Energy, Elsevier, vol. 231(C).
    12. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    13. Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).
    14. Piotr F. Borowski, 2022. "Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants," Energies, MDPI, vol. 15(5), pages 1-16, March.
    15. Vladimír Hönig & Petr Prochazka & Michal Obergruber & Luboš Smutka & Viera Kučerová, 2019. "Economic and Technological Analysis of Commercial LNG Production in the EU," Energies, MDPI, vol. 12(8), pages 1-17, April.
    16. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    17. Duan, Xiongbo & Liu, Jingping & Yao, Jun & Chen, Zheng & Wu, Cheng & Chen, Ceyuan & Dong, Hao, 2018. "Performance, combustion and knock assessment of a high compression ratio and lean-burn heavy-duty spark-ignition engine fuelled with n-butane and liquefied methane gas blend," Energy, Elsevier, vol. 158(C), pages 256-268.
    18. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    19. Matteo Genovese & David Blekhman & Michael Dray & Francesco Piraino & Petronilla Fragiacomo, 2023. "Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method," Energies, MDPI, vol. 16(15), pages 1-14, August.
    20. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5568-:d:629886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.