IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5464-d627596.html
   My bibliography  Save this article

Edge HVAC Analytics

Author

Listed:
  • Ioan Petri

    (School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Omer Rana

    (School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, UK)

  • Yacine Rezgui

    (School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Fodil Fadli

    (Department of Architecture & Urban Planning, Qatar University, University Street, Doha 2713, Qatar)

Abstract

Integrating data analytics, optimisation and dynamic control to support energy services has seen significant interest in recent years. Larger appliances used in an industry context are now provided with Internet of Things (IoT)-based interfaces that can be remotely monitored, with some also provided with actuation interfaces. The combined use of IoT and edge computing enables connectivity between energy systems and infrastructure, providing the means to implement both energy efficiency/optimisation and cost reduction strategies. We investigate the economic implications of harnessing IoT and edge/cloud technologies to support energy management for HVAC (Heating, Ventilation and Air Conditioning) systems in buildings. In particular, we evaluate the cost savings for building operations through energy optimisation. We use a real use case for energy optimisation as identified in the EU “Sporte2” project (focusing on the energy optimisation of sports facilities) and explore several scenarios in relation to costs and energy optimisation.

Suggested Citation

  • Ioan Petri & Omer Rana & Yacine Rezgui & Fodil Fadli, 2021. "Edge HVAC Analytics," Energies, MDPI, vol. 14(17), pages 1-11, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5464-:d:627596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5464/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    2. Frederiks, Elisha R. & Stenner, Karen & Hobman, Elizabeth V., 2015. "Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1385-1394.
    3. Jason F. Shogren & Laura O. Taylor, 2008. "On Behavioral-Environmental Economics," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(1), pages 26-44, Winter.
    4. Sanstad, Alan H & Blumstein, Carl & Stoft, Steven E, 1995. "How high are option values in energy-efficiency investments?," Energy Policy, Elsevier, vol. 23(9), pages 739-743, September.
    5. Metcalf, Gilbert E., 1994. "Economics and rational conservation policy," Energy Policy, Elsevier, vol. 22(10), pages 819-825, October.
    6. Saidur, R., 2009. "Energy consumption, energy savings, and emission analysis in Malaysian office buildings," Energy Policy, Elsevier, vol. 37(10), pages 4104-4113, October.
    7. Geoffrey Heal, 2009. "The Economics of Renewable Energy," NBER Working Papers 15081, National Bureau of Economic Research, Inc.
    8. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elnour, Mariam & Fadli, Fodil & Himeur, Yassine & Petri, Ioan & Rezgui, Yacine & Meskin, Nader & Ahmad, Ahmad M., 2022. "Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    2. Kenneth Gillingham & Karen Palmer, 2014. "Bridging the Energy Efficiency Gap: Policy Insights from Economic Theory and Empirical Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(1), pages 18-38, January.
    3. Giraudet, Louis-Gaëtan, 2020. "Energy efficiency as a credence good: A review of informational barriers to energy savings in the building sector," Energy Economics, Elsevier, vol. 87(C).
    4. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    5. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    6. Rosenow, Jan & Platt, Reg & Demurtas, Andrea, 2014. "Fiscal impacts of energy efficiency programmes—The example of solid wall insulation investment in the UK," Energy Policy, Elsevier, vol. 74(C), pages 610-620.
    7. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    8. Robert Stavins & Judson Jaffe & Todd Schatzki, 2007. "Too Good to Be True? An Examination of Three Economic Assessments of California Climate Change Policy," NBER Working Papers 13587, National Bureau of Economic Research, Inc.
    9. Spandagos, Constantine & Yarime, Masaru & Baark, Erik & Ng, Tze Ling, 2020. "“Triple Target” policy framework to influence household energy behavior: Satisfy, strengthen, include," Applied Energy, Elsevier, vol. 269(C).
    10. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    11. Cem Keskin & M. Pınar Mengüç, 2018. "On Occupant Behavior and Innovation Studies Towards High Performance Buildings: A Transdisciplinary Approach," Sustainability, MDPI, vol. 10(10), pages 1-33, October.
    12. Dalia Streimikiene & Tomas Balezentis & Irena Alebaite, 2020. "Climate Change Mitigation in Households between Market Failures and Psychological Barriers," Energies, MDPI, vol. 13(11), pages 1-21, June.
    13. Töppel, Jannick & Tränkler, Timm, 2019. "Modeling energy efficiency insurances and energy performance contracts for a quantitative comparison of risk mitigation potential," Energy Economics, Elsevier, vol. 80(C), pages 842-859.
    14. Wolfgang Buchholz & Jonas Frank & Hans-Dieter Karl & Johannes Pfeiffer & Karen Pittel & Ursula Triebswetter & Jochen Habermann & Wolfgang Mauch & Thomas Staudacher, 2012. "Die Zukunft der Energiemärkte: Ökonomische Analyse und Bewertung von Potenzialen und Handlungsmöglichkeiten," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 57.
    15. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    16. Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2021. "Understanding the risk perception of energy efficiency investments: Investment perspective vs. energy bill perspective," Energy Policy, Elsevier, vol. 159(C).
    17. Chersoni, Giulia & DellaValle, Nives & Fontana, Magda, 2022. "Modelling thermal insulation investment choice in the EU via a behaviourally informed agent-based model," Energy Policy, Elsevier, vol. 163(C).
    18. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.
    19. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.
    20. Samdruk Dharshing & Stefanie Lena Hille, 2017. "The Energy Paradox Revisited: Analyzing the Role of Individual Differences and Framing Effects in Information Perception," Journal of Consumer Policy, Springer, vol. 40(4), pages 485-508, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5464-:d:627596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.