IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v93y2018icp260-271.html
   My bibliography  Save this article

Life cycle assessment of a wind farm repowering process

Author

Listed:
  • Martínez, E.
  • Latorre-Biel, J.I.
  • Jiménez, E.
  • Sanz, F.
  • Blanco, J.

Abstract

More and more wind farms are reaching the end of their useful lifetimes, so it is necessary to consider the need and/or suitability of dismantling or repowering them. This paper presents an analysis from the point of view of the potential environmental impact and benefit of a wind farm repowering process.

Suggested Citation

  • Martínez, E. & Latorre-Biel, J.I. & Jiménez, E. & Sanz, F. & Blanco, J., 2018. "Life cycle assessment of a wind farm repowering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 260-271.
  • Handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:260-271
    DOI: 10.1016/j.rser.2018.05.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118303940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.05.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goossens, Y. & Annaert, B. & De Tavernier, J. & Mathijs, E. & Keulemans, W. & Geeraerd, A., 2017. "Life cycle assessment (LCA) for apple orchard production systems including low and high productive years in conventional, integrated and organic farms," Agricultural Systems, Elsevier, vol. 153(C), pages 81-93.
    2. Llorente Iglesias, Rosario & Lacal Arantegui, Roberto & Aguado Alonso, Mónica, 2011. "Power electronics evolution in wind turbines—A market-based analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4982-4993.
    3. García-Gusano, Diego & Garraín, Daniel & Dufour, Javier, 2017. "Prospective life cycle assessment of the Spanish electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 21-34.
    4. Teresa Romano & Tim Mennel & Sara Scatasta, 2017. "Comparing feed-in tariffs and renewable obligation certificates: the case of repowering wind farms," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 44(3), pages 291-314, September.
    5. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
    6. Hou, Peng & Enevoldsen, Peter & Hu, Weihao & Chen, Cong & Chen, Zhe, 2017. "Offshore wind farm repowering optimization," Applied Energy, Elsevier, vol. 208(C), pages 834-844.
    7. Beccali, Marco & Cellura, Maurizio & Fontana, Mario & Longo, Sonia & Mistretta, Marina, 2013. "Energy retrofit of a single-family house: Life cycle net energy saving and environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 283-293.
    8. del Río, Pablo & Calvo Silvosa, Anxo & Iglesias Gómez, Guillermo, 2011. "Policies and design elements for the repowering of wind farms: A qualitative analysis of different options," Energy Policy, Elsevier, vol. 39(4), pages 1897-1908, April.
    9. Biresselioglu, Mehmet Efe & Kilinc, Dilara & Onater-Isberk, Esra & Yelkenci, Tezer, 2016. "Estimating the political, economic and environmental factors’ impact on the installed wind capacity development: A system GMM approach," Renewable Energy, Elsevier, vol. 96(PA), pages 636-644.
    10. Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Mur-Pérez, Francisco, 2015. "Repowering: An actual possibility for wind energy in Spain in a new scenario without feed-in-tariffs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 319-337.
    11. Serri, Laura & Lembo, Ettore & Airoldi, Davide & Gelli, Camilla & Beccarello, Massimo, 2018. "Wind energy plants repowering potential in Italy: technical-economic assessment," Renewable Energy, Elsevier, vol. 115(C), pages 382-390.
    12. Jones, Christopher & Gilbert, Paul & Raugei, Marco & Mander, Sarah & Leccisi, Enrica, 2017. "An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation," Energy Policy, Elsevier, vol. 100(C), pages 350-358.
    13. Martínez, E. & Sanz, F. & Pellegrini, S. & Jiménez, E. & Blanco, J., 2009. "Life cycle assessment of a multi-megawatt wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 667-673.
    14. Santos-Alamillos, F.J. & Thomaidis, N.S. & Usaola-García, J. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2017. "Exploring the mean-variance portfolio optimization approach for planning wind repowering actions in Spain," Renewable Energy, Elsevier, vol. 106(C), pages 335-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leite, Gustavo de Novaes Pires & Weschenfelder, Franciele & Farias, João Gabriel de & Kamal Ahmad, Muhammad, 2022. "Economic and sensitivity analysis on wind farm end-of-life strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Rusu, Eugen & Onea, Florin, 2019. "A parallel evaluation of the wind and wave energy resources along the Latin American and European coastal environments," Renewable Energy, Elsevier, vol. 143(C), pages 1594-1607.
    3. Khan, Mehtab Ahmad & Javed, Adeel & Shakir, Sehar & Syed, Abdul Haseeb, 2021. "Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective," Applied Energy, Elsevier, vol. 298(C).
    4. Isabel C. Gil-García & Ana Fernández-Guillamón & M. Socorro García-Cascales & Angel Molina-García, 2021. "A Multi-Factorial Review of Repowering Wind Generation Strategies," Energies, MDPI, vol. 14(19), pages 1-25, October.
    5. de Simón-Martín, Miguel & Ciria-Garcés, Tomás & Rosales-Asensio, Enrique & González-Martínez, Alberto, 2022. "Multi-dimensional barrier identification for wind farm repowering in Spain through an expert judgment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Robert Kasner & Weronika Kruszelnicka & Patrycja Bałdowska-Witos & Józef Flizikowski & Andrzej Tomporowski, 2020. "Sustainable Wind Power Plant Modernization," Energies, MDPI, vol. 13(6), pages 1-23, March.
    7. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    8. Doukas, H. & Arsenopoulos, A. & Lazoglou, M. & Nikas, A. & Flamos, A., 2022. "Wind repowering: Unveiling a hidden asset," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. de Bona, Jéssica Ceolin & Ferreira, Joao Carlos Espindola & Ordoñez Duran, Julian Fernando, 2021. "Analysis of scenarios for repowering wind farms in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Andrzej Jezierski & Cezary Mańkowski & Rafał Śpiewak, 2021. "Energy Savings Analysis in Logistics of a Wind Farm Repowering Process: A Case Study," Energies, MDPI, vol. 14(17), pages 1-23, September.
    11. Wang, Longyan & Zuo, Ming J. & Xu, Jian & Zhou, Yunkai & Tan, Andy C., 2019. "Optimizing wind farm layout by addressing energy-variance trade-off: A single-objective optimization approach," Energy, Elsevier, vol. 189(C).
    12. Francisco Javier Flor-Montalvo & Jorge Luis García-Alcaraz & Agustín Sánchez-Toledo Ledesma & Leandro Álvarez-Kurogi, 2020. "Social-LCA. Methodological Proposal Applied to Physical Activity Program Implementation into Old People’s Routines," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    13. Besseau, Romain & Sacchi, Romain & Blanc, Isabelle & Pérez-López, Paula, 2019. "Past, present and future environmental footprint of the Danish wind turbine fleet with LCA_WIND_DK, an online interactive platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 274-288.
    14. Syed, Abdul Haseeb & Javed, Adeel & Asim Feroz, Raja M. & Calhoun, Ronald, 2020. "Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations," Applied Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabel C. Gil-García & Ana Fernández-Guillamón & M. Socorro García-Cascales & Angel Molina-García, 2021. "A Multi-Factorial Review of Repowering Wind Generation Strategies," Energies, MDPI, vol. 14(19), pages 1-25, October.
    2. de Bona, Jéssica Ceolin & Ferreira, Joao Carlos Espindola & Ordoñez Duran, Julian Fernando, 2021. "Analysis of scenarios for repowering wind farms in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Francisco Haces-Fernandez, 2021. "Higher Wind: Highlighted Expansion Opportunities to Repower Wind Energy," Energies, MDPI, vol. 14(22), pages 1-19, November.
    4. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    5. de Simón-Martín, Miguel & Ciria-Garcés, Tomás & Rosales-Asensio, Enrique & González-Martínez, Alberto, 2022. "Multi-dimensional barrier identification for wind farm repowering in Spain through an expert judgment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    7. Syed, Abdul Haseeb & Javed, Adeel & Asim Feroz, Raja M. & Calhoun, Ronald, 2020. "Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations," Applied Energy, Elsevier, vol. 268(C).
    8. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    9. Mohamed R. Gomaa & Hegazy Rezk & Ramadan J. Mustafa & Mujahed Al-Dhaifallah, 2019. "Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study," Energies, MDPI, vol. 12(17), pages 1-25, August.
    10. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Leite, Gustavo de Novaes Pires & Weschenfelder, Franciele & Farias, João Gabriel de & Kamal Ahmad, Muhammad, 2022. "Economic and sensitivity analysis on wind farm end-of-life strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Ahmed, Faraedoon & Foley, Aoife & Dowds, Carole & Johnston, Barry & Al Kez, Dlzar, 2024. "Assessing the engineering, environmental and economic aspects of repowering onshore wind energy," Energy, Elsevier, vol. 301(C).
    13. Doukas, H. & Arsenopoulos, A. & Lazoglou, M. & Nikas, A. & Flamos, A., 2022. "Wind repowering: Unveiling a hidden asset," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    15. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    17. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    18. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    19. Claudio Baudino & Nicole Roberta Giuggioli & Rossella Briano & Stefano Massaglia & Cristiana Peano, 2017. "Integrated Methodologies (SWOT, TOWS, LCA) for Improving Production Chains and Environmental Sustainability of Kiwifruit and Baby Kiwi in Italy," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    20. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:260-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.