IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5308-d622892.html
   My bibliography  Save this article

Low-Impact Current-Based Distributed Monitoring System for Medium Voltage Networks

Author

Listed:
  • Alessandro Mingotti

    (Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi, Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Lorenzo Peretto

    (Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi, Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Roberto Tinarelli

    (Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi, Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

Abstract

Distribution networks are currently subject to a huge revolution in terms of assets being installed. In particular, the massive spread of renewable energy sources has drastically changed the way of approaching the grid. For example, renewables affected (i) the production of the legacy power plants, (ii) the quality of the supplied energy, decreasing it, (iii) the fault detection and location, etc. To mitigate the significant drawbacks of the renewables’ presence, several intelligent electronic devices have been (and are being) developed and installed among the grid. The aim is to increase grid monitoring and knowledge of its status. However, considering the significant number of nodes of the distribution network, compared to the transmission one, the process of installing new equipment is not effortless and is also quite expensive. This work aims at emphasizing a new concept of distributed monitoring systems, based on the phasor measurement unit’s current measurements, and a controlling algorithm to exploit it. The idea underneath the work is to avoid the out-of-service time needed and the costs associated with the installation of voltage sensors. Therefore, this paper describes an algorithm that exploits measurements from existing equipment and current measurements from PMUs to obtain information on the load and the node voltages. The algorithm is then tested on simulated power networks of increasing complexity and verified with an uncertainty evaluation. The results obtained from the simulation confirm the applicability and effectiveness of the algorithm and the benefits of a current-based monitoring system.

Suggested Citation

  • Alessandro Mingotti & Lorenzo Peretto & Roberto Tinarelli, 2021. "Low-Impact Current-Based Distributed Monitoring System for Medium Voltage Networks," Energies, MDPI, vol. 14(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5308-:d:622892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandro Mingotti & Lorenzo Peretto & Roberto Tinarelli & Andrea Angioni & Antonello Monti & Ferdinanda Ponci, 2019. "A Simple Calibration Procedure for an LPIT plus PMU System Under Off-Nominal Conditions," Energies, MDPI, vol. 12(24), pages 1-20, December.
    2. Antonelli, Marco & Desideri, Umberto & Franco, Alessandro, 2018. "Effects of large scale penetration of renewables: The Italian case in the years 2008–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3090-3100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Artale & Nicola Panzavecchia & Valentina Cosentino & Antonio Cataliotti & Manel Ben-Romdhane & Amel Benazza-Ben Yahia & Valeria Boscaino & Noureddine Ben Othman & Vito Ditta & Michele Fiorino, 2023. "CZT-Based Harmonic Analysis in Smart Grid Using Low-Cost Electronic Measurement Boards," Energies, MDPI, vol. 16(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chia-Nan Wang & Hector Tibo & Duy Hung Duong, 2020. "Renewable Energy Utilization Analysis of Highly and Newly Industrialized Countries Using an Undesirable Output Model," Energies, MDPI, vol. 13(10), pages 1-21, May.
    2. Bellocchi, Sara & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2018. "Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 161(C), pages 172-182.
    3. Papadopoulos, V. & Knockaert, J. & Develder, C. & Desmet, J., 2019. "Investigating the need for real time measurements in industrial wind power systems combined with battery storage," Applied Energy, Elsevier, vol. 247(C), pages 559-571.
    4. Vasileios Papadopoulos & Jos Knockaert & Chris Develder & Jan Desmet, 2020. "Peak Shaving through Battery Storage for Low-Voltage Enterprises with Peak Demand Pricing," Energies, MDPI, vol. 13(5), pages 1-17, March.
    5. Michal Kaczmarek & Artur Szczęsny & Ernest Stano, 2022. "Operation of the Electronic Current Transformer for Transformation of Distorted Current Higher Harmonics," Energies, MDPI, vol. 15(12), pages 1-10, June.
    6. Michal Kaczmarek & Ernest Stano, 2023. "Review of Measuring Methods, Setups and Conditions for Evaluation of the Inductive Instrument Transformers Accuracy for Transformation of Distorted Waveforms," Energies, MDPI, vol. 16(11), pages 1-17, May.
    7. Gianfreda, Angelica & Parisio, Lucia & Pelagatti, Matteo, 2018. "A review of balancing costs in Italy before and after RES introduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 549-563.
    8. Asdrubali, F. & Baggio, P. & Prada, A. & Grazieschi, G. & Guattari, C., 2020. "Dynamic life cycle assessment modelling of a NZEB building," Energy, Elsevier, vol. 191(C).
    9. Alessio Valente & Vittorio Catani & Libera Esposito & Guido Leone & Mauro Pagnozzi & Francesco Fiorillo, 2022. "Groundwater Resources in a Complex Karst Environment Involved by Wind Power Farm Construction," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    10. Corsini, Alessandro & Delibra, Giovanni & Pizzuti, Isabella & Tajalli-Ardekani, Erfan, 2023. "Challenges of renewable energy communities on small Mediterranean islands: A case study on Ponza island," Renewable Energy, Elsevier, vol. 215(C).
    11. Kolb, Sebastian & Dillig, Marius & Plankenbühler, Thomas & Karl, Jürgen, 2020. "The impact of renewables on electricity prices in Germany - An update for the years 2014–2018," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    13. Atherton, John & Hofmeister, Markus & Mosbach, Sebastian & Akroyd, Jethro & Farazi, Feroz & Kraft, Markus, 2023. "British imbalance market paradox: Variable renewable energy penetration in energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    14. Giugno, Andrea & Sorce, Alessandro & Cuneo, Alessandra & Barberis, Stefano, 2021. "Effects of market and climatic conditions over a gas turbine combined cycle integrated with a Heat Pump for inlet cooling," Applied Energy, Elsevier, vol. 290(C).
    15. Avesani, Diego & Zanfei, Ariele & Di Marco, Nicola & Galletti, Andrea & Ravazzolo, Francesco & Righetti, Maurizio & Majone, Bruno, 2022. "Short-term hydropower optimization driven by innovative time-adapting econometric model," Applied Energy, Elsevier, vol. 310(C).
    16. Liemberger, Werner & Halmschlager, Daniel & Miltner, Martin & Harasek, Michael, 2019. "Efficient extraction of hydrogen transported as co-stream in the natural gas grid – The importance of process design," Applied Energy, Elsevier, vol. 233, pages 747-763.
    17. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "Evaluation of the Current Shunt Influence on the Determined Wideband Accuracy of Inductive Current Transformers," Energies, MDPI, vol. 15(18), pages 1-12, September.
    18. Oluleye, Gbemi & Allison, John & Hawker, Graeme & Kelly, Nick & Hawkes, Adam D., 2018. "A two-step optimization model for quantifying the flexibility potential of power-to-heat systems in dwellings," Applied Energy, Elsevier, vol. 228(C), pages 215-228.
    19. Alessandro Franco & Giacomo Cillari, 2021. "Energy Sustainability of Food Stores and Supermarkets through the Installation of PV Integrated Plants," Energies, MDPI, vol. 14(18), pages 1-17, September.
    20. Simon Wright & Mark Frost & Alfred Wong & Kevin A. Parton, 2022. "Australian Renewable-Energy Microgrids: A Humble Past, a Turbulent Present, a Propitious Future," Sustainability, MDPI, vol. 14(5), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5308-:d:622892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.