IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5175-d618999.html
   My bibliography  Save this article

Analysis of Changes in Natural Gas Physical Flows for Europe via Ukraine in 2020

Author

Listed:
  • Filip Božić

    (Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia)

  • Daria Karasalihović Sedlar

    (Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia)

  • Ivan Smajla

    (Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia)

  • Ivana Ivančić

    (Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia)

Abstract

The main objective of the paper was comparative analyses of natural gas quantities delivered through the existing pipeline capacities in the last decade and new pipeline capacities for the prediction of possible future flows of gas import to Europe. Changes in physical flows have been influenced by European energy strategies that became green oriented resulting with a high amount of non-utilized transmission capacities. The research findings have shown that there is a significant decrease observed in transit of Russian gas through Ukraine in 2020 than previously. Concerning the high increase of LNG import to Europe in the same year, the start of operation of TurkStream, planned start of operation of Nord stream 2, authors project the gradual decrease of transit of Russian gas through Ukraine until the year 2025 with the total stop of transit of Russian gas until the year 2030. The change of supply routes will be also under the economic influence of low gas prices and coal and gas fuel switch until 2030 in the West EU, and after 2030 in the South Eastern European region. In the short-term period transit system for natural gas from Russia via Ukraine will be necessary for supplementing coal with natural gas in the energy mix.

Suggested Citation

  • Filip Božić & Daria Karasalihović Sedlar & Ivan Smajla & Ivana Ivančić, 2021. "Analysis of Changes in Natural Gas Physical Flows for Europe via Ukraine in 2020," Energies, MDPI, vol. 14(16), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5175-:d:618999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Yusin, 2017. "Interdependence, issue importance, and the 2009 Russia-Ukraine gas conflict," Energy Policy, Elsevier, vol. 102(C), pages 199-209.
    2. Sziklai, Balázs R. & Kóczy, László Á. & Csercsik, Dávid, 2020. "The impact of Nord Stream 2 on the European gas market bargaining positions," Energy Policy, Elsevier, vol. 144(C).
    3. Le Coq, Chloé & Paltseva, Elena, 2012. "Assessing gas transit risks: Russia vs. the EU," Energy Policy, Elsevier, vol. 42(C), pages 642-650.
    4. Sauvageot, Eric Pardo, 2020. "Between Russia as producer and Ukraine as a transit country: EU dilemma of interdependence and energy security," Energy Policy, Elsevier, vol. 145(C).
    5. Lidskog, Rolf & Elander, Ingemar, 2012. "Sweden and the Baltic Sea pipeline: Between ecology and economy," Marine Policy, Elsevier, vol. 36(2), pages 333-338.
    6. Flouri, Maria & Karakosta, Charikleia & Kladouchou, Charikleia & Psarras, John, 2015. "How does a natural gas supply interruption affect the EU gas security? A Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 785-796.
    7. Nagayama, Daisuke & Horita, Masahide, 2014. "A network game analysis of strategic interactions in the international trade of Russian natural gas through Ukraine and Belarus," Energy Economics, Elsevier, vol. 43(C), pages 89-101.
    8. Bilgin, Mert, 2009. "Geopolitics of European natural gas demand: Supplies from Russia, Caspian and the Middle East," Energy Policy, Elsevier, vol. 37(11), pages 4482-4492, November.
    9. Pulhan, Afet & Yorucu, Vedat & Sinan Evcan, Nusret, 2020. "Global energy market dynamics and natural gas development in the Eastern Mediterranean region," Utilities Policy, Elsevier, vol. 64(C).
    10. Maltby, Tomas, 2013. "European Union energy policy integration: A case of European Commission policy entrepreneurship and increasing supranationalism," Energy Policy, Elsevier, vol. 55(C), pages 435-444.
    11. Austvik, Ole Gunnar & Rzayeva, Gülmira, 2017. "Turkey in the geopolitics of energy," Energy Policy, Elsevier, vol. 107(C), pages 539-547.
    12. Kacper Szulecki & Severin Fischer & Anne Therese Gullberg & Oliver Sartor, 2016. "Shaping the ‘Energy Union': between national positions and governance innovation in EU energy and climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(5), pages 548-567, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sofia Berdysheva & Svetlana Ikonnikova, 2021. "The Energy Transition and Shifts in Fossil Fuel Use: The Study of International Energy Trade and Energy Security Dynamics," Energies, MDPI, vol. 14(17), pages 1-26, August.
    2. Jan Polaszczyk & Maria Kubacka, 2021. "Comparison Analysis of Energy Markets‘ Aspects in the Visegrad Group Countries," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 808-823.
    3. Gordon Rausser & Wadim Strielkowski & Grzegorz Mentel, 2023. "Consumer Attitudes toward Energy Reduction and Changing Energy Consumption Behaviors," Energies, MDPI, vol. 16(3), pages 1-5, February.
    4. Wiktor Hebda, 2021. "The North-South Gas Corridor in the Context of Poland’s Gas Transmission System—A Perfect Opportunity to Diversify Gas Resources," Energies, MDPI, vol. 14(21), pages 1-21, November.
    5. Jānis Krūmiņš & Māris Kļaviņš, 2022. "The Baltic States’ Move toward a Sustainable Energy Future," Energies, MDPI, vol. 15(21), pages 1-31, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guych Nuryyev & Tomasz Korol & Ilia Tetin, 2021. "Hold-Up Problems in International Gas Trade: A Case Study," Energies, MDPI, vol. 14(16), pages 1-16, August.
    2. Wood, Steve & Henke, Otto, 2021. "Denmark and Nord Stream 2: A small state's role in global energy politics," Energy Policy, Elsevier, vol. 148(PB).
    3. Dimitrios Dimitriou & Panagiotis Zeimpekis, 2022. "Appraisal Modeling for FSRU Greenfield Energy Projects," Energies, MDPI, vol. 15(9), pages 1-21, April.
    4. Roman Vavrek & Jana Chovancová, 2020. "Energy Performance of the European Union Countries in Terms of Reaching the European Energy Union Objectives," Energies, MDPI, vol. 13(20), pages 1-16, October.
    5. Mišík, Matúš, 2022. "The EU needs to improve its external energy security," Energy Policy, Elsevier, vol. 165(C).
    6. Goodell, John W. & Gurdgiev, Constantin & Paltrinieri, Andrea & Piserà, Stefano, 2023. "Global energy supply risk: Evidence from the reactions of European natural gas futures to Nord Stream announcements," Energy Economics, Elsevier, vol. 125(C).
    7. Flouri, Maria & Karakosta, Charikleia & Kladouchou, Charikleia & Psarras, John, 2015. "How does a natural gas supply interruption affect the EU gas security? A Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 785-796.
    8. Hauser, Philipp, 2021. "Does ‘more’ equal ‘better’? – Analyzing the impact of diversification strategies on infrastructure in the European gas market," Energy Policy, Elsevier, vol. 153(C).
    9. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    10. Thomas Sattich, 2016. "Energy Imports, Geoeconomics, and Regional Coordination: The Case of Germany and Poland in the Baltic Energy System - Close Neighbours, Close(r) Cooperation?," International Journal of Energy Economics and Policy, Econjournals, vol. 6(4), pages 789-800.
    11. Veronika Oravcová & Kateryna Yakovenko & Matúš Mišík, 2022. "Complete but Fragmented: Research on Energy in Central and Eastern Europe," Energies, MDPI, vol. 15(17), pages 1-16, August.
    12. Dubský, Zbyněk & Tichý, Lukáš & Pavliňák, Daniel, 2021. "A quantifiable approach to the selection of criteria and indexation for comparison of the gas pipeline projects leading to the EU: Diversification rationality against securitisation?," Energy, Elsevier, vol. 225(C).
    13. Lu, Weiwei & Su, Meirong & Fath, Brian D. & Zhang, Mingqi & Hao, Yan, 2016. "A systematic method of evaluation of the Chinese natural gas supply security," Applied Energy, Elsevier, vol. 165(C), pages 858-867.
    14. Salameh, R. & Chedid, R., 2020. "Economic and geopolitical implications of natural gas export from the East Mediterranean: The case of Lebanon," Energy Policy, Elsevier, vol. 140(C).
    15. Yassine Rqiq & Jesus Beyza & Jose M. Yusta & Ricardo Bolado-Lavin, 2020. "Assessing the Impact of Investments in Cross-Border Pipelines on the Security of Gas Supply in the EU," Energies, MDPI, vol. 13(11), pages 1-23, June.
    16. Piotr Maśloch & Grzegorz Maśloch & Łukasz Kuźmiński & Henryk Wojtaszek & Ireneusz Miciuła, 2020. "Autonomous Energy Regions as a Proposed Choice of Selecting Selected EU Regions—Aspects of Their Creation and Management," Energies, MDPI, vol. 13(23), pages 1-27, December.
    17. Natalia Iwaszczuk & Ivanna Zapukhliak & Aleksander Iwaszczuk & Oleh Dzoba & Oleksandra Romashko, 2022. "Underground Gas Storage Facilities in Ukraine: Current State and Future Prospects," Energies, MDPI, vol. 15(18), pages 1-34, September.
    18. Maliszewska-Nienartowicz, Justyna & Stefański, Oskar, 2024. "Decentralisation versus centralisation in Swedish energy policy: the main challenges and drivers for the energy transition at the regional and local levels," Energy Policy, Elsevier, vol. 188(C).
    19. Chen, Qian & Zuo, Lili & Wu, Changchun & Cao, Yankai & Bu, Yaran & Chen, Feng & Sadiq, Rehan, 2021. "Supply reliability assessment of a gas pipeline network under stochastic demands," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    20. Chen, Qian & Zuo, Lili & Wu, Changchun & Bu, Yaran & Lu, Yifei & Huang, Yanfei & Chen, Feng, 2020. "Short-term supply reliability assessment of a gas pipeline system under demand variations," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5175-:d:618999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.