Advanced Exergy Analysis of Waste-Based District Heating Options through Case Studies
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mohammadi, Z. & Fallah, M. & Mahmoudi, S.M. Seyed, 2019. "Advanced exergy analysis of recompression supercritical CO2 cycle," Energy, Elsevier, vol. 178(C), pages 631-643.
- Mossi Idrissa, A.K. & Goni Boulama, K., 2019. "Advanced exergy analysis of a combined Brayton/Brayton power cycle," Energy, Elsevier, vol. 166(C), pages 724-737.
- Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Thermodynamic performance analysis and modified thermo-ecological cost optimization of a hybrid district heating system considering energy levels," Energy, Elsevier, vol. 224(C).
- Wang, Yinglong & Chen, Zhengrun & Shen, Yuanyuan & Ma, Zhaoyuan & Li, Huiyuan & Liu, Xiaobin & Zhu, Zhaoyou & Qi, Jianguang & Cui, Peizhe & Wang, Lei & Ma, Yixin & Xu, Dongmei, 2021. "Advanced exergy and exergoeconomic analysis of an integrated system combining CO2 capture-storage and waste heat utilization processes," Energy, Elsevier, vol. 219(C).
- Caglayan, Hasan & Caliskan, Hakan, 2021. "Advanced exergy analyses and optimization of a cogeneration system for ceramic industry by considering endogenous, exogenous, avoidable and unavoidable exergies under different environmental condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Michael-Allan Millar & Neil M. Burnside & Zhibin Yu, 2019. "District Heating Challenges for the UK," Energies, MDPI, vol. 12(2), pages 1-21, January.
- Fang, Hao & Xia, Jianjun & Jiang, Yi, 2015. "Key issues and solutions in a district heating system using low-grade industrial waste heat," Energy, Elsevier, vol. 86(C), pages 589-602.
- Liao, Gaoliang & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Leng, Erwei, 2020. "Advanced exergy analysis for Organic Rankine Cycle-based layout to recover waste heat of flue gas," Applied Energy, Elsevier, vol. 266(C).
- Ji, Chenzhen & Qin, Zhen & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Three-dimensional transient numerical study on latent heat thermal storage for waste heat recovery from a low temperature gas flow," Applied Energy, Elsevier, vol. 205(C), pages 1-12.
- Andrej Ljubenko & Alojz Poredoš & Tatiana Morosuk & George Tsatsaronis, 2013. "Performance Analysis of a District Heating System," Energies, MDPI, vol. 6(3), pages 1-16, March.
- Yamankaradeniz, Nurettin, 2016. "Thermodynamic performance assessments of a district heating system with geothermal by using advanced exergy analysis," Renewable Energy, Elsevier, vol. 85(C), pages 965-972.
- Koroglu, Turgay & Sogut, Oguz Salim, 2018. "Conventional and advanced exergy analyses of a marine steam power plant," Energy, Elsevier, vol. 163(C), pages 392-403.
- Fabian Bühler & Stefan Petrović & Torben Ommen & Fridolin Müller Holm & Henrik Pieper & Brian Elmegaard, 2018. "Identification and Evaluation of Cases for Excess Heat Utilisation Using GIS," Energies, MDPI, vol. 11(4), pages 1-24, March.
- Lingwei Zhang & Yufei Wang & Xiao Feng, 2021. "A Framework for Design and Operation Optimization for Utilizing Low-Grade Industrial Waste Heat in District Heating and Cooling," Energies, MDPI, vol. 14(8), pages 1-21, April.
- Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
- Xu, Qian & Wang, Kang & Zou, Zhenwei & Zhong, Liqiong & Akkurt, Nevzat & Feng, Junxiao & Xiong, Yaxuan & Han, Jingxiao & Wang, Jiulong & Du, Yanping, 2021. "A new type of two-supply, one-return, triple pipe-structured heat loss model based on a low temperature district heating system," Energy, Elsevier, vol. 218(C).
- Fellaou, S. & Bounahmidi, T., 2018. "Analyzing thermodynamic improvement potential of a selected cement manufacturing process: Advanced exergy analysis," Energy, Elsevier, vol. 154(C), pages 190-200.
- Arabkoohsar, Ahmad & Alsagri, Ali Sulaiman, 2020. "Thermodynamic analysis of ultralow-temperature district heating system with shared power heat pumps and triple-pipes," Energy, Elsevier, vol. 194(C).
- Abusoglu, Aysegul & Tozlu, Alperen & Anvari-Moghaddam, Amjad, 2021. "District heating and electricity production based on biogas produced from municipal WWTPs in Turkey: A comprehensive case study," Energy, Elsevier, vol. 223(C).
- Zhu, Sipeng & Ma, Zetai & Zhang, Kun & Deng, Kangyao, 2020. "Energy and exergy analysis of the combined cycle power plant recovering waste heat from the marine two-stroke engine under design and off-design conditions," Energy, Elsevier, vol. 210(C).
- Aghaziarati, Zeinab & Aghdam, Abolfazl Hajizadeh, 2021. "Thermoeconomic analysis of a novel combined cooling, heating and power system based on solar organic Rankine cycle and cascade refrigeration cycle," Renewable Energy, Elsevier, vol. 164(C), pages 1267-1283.
- Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Audrius Bagdanavicius, 2022. "Energy and Exergy Analysis of Renewable Energy Conversion Systems," Energies, MDPI, vol. 15(15), pages 1-2, July.
- Zhi Zou & Longcheng Liu & Shuo Meng & Xiaolei Bian & Yongmei Li, 2021. "Applicability of Different Double-Layer Models for the Performance Assessment of the Capacitive Energy Extraction Based on Double Layer Expansion (CDLE) Technique," Energies, MDPI, vol. 14(18), pages 1-22, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Koroglu, Turgay & Sogut, Oguz Salim, 2023. "Developing criteria for advanced exergoeconomic performance analysis of thermal energy systems: Application to a marine steam power plant," Energy, Elsevier, vol. 267(C).
- Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Muhammad, Hafiz Ali & Lee, Beomjoon & Cho, Junhyun & Rehman, Zabdur & Choi, Bongsu & Cho, Jongjae & Roh, Chulwoo & Lee, Gilbong & Imran, Muhammad & Baik, Young-Jin, 2021. "Application of advanced exergy analysis for optimizing the design of carbon dioxide pressurization system," Energy, Elsevier, vol. 228(C).
- Arat, Halit & Arslan, Oguz, 2017. "Exergoeconomic analysis of district heating system boosted by the geothermal heat pump," Energy, Elsevier, vol. 119(C), pages 1159-1170.
- Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Florin Iov & Mahmood Khatibi & Jan Dimon Bendtsen, 2020. "On the Participation of Power-To-Heat Assets in Frequency Regulation Markets—A Danish Case Study," Energies, MDPI, vol. 13(18), pages 1-22, September.
- Dorotić, Hrvoje & Ban, Marko & Pukšec, Tomislav & Duić, Neven, 2020. "Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & Zheng, Lijun & Gao, Xinyong & You, Shijun, 2023. "Difference analysis and recognition of hydraulic oscillation by two types of sudden faults on long-distance district heating pipeline," Energy, Elsevier, vol. 284(C).
- Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
- Zhang, Hongsheng & Liu, Xingang & Liu, Yifeng & Duan, Chenghong & Dou, Zhan & Qin, Jiyun, 2021. "Energy and exergy analyses of a novel cogeneration system coupled with absorption heat pump and organic Rankine cycle based on a direct air cooling coal-fired power plant," Energy, Elsevier, vol. 229(C).
- Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
- Lingwei Zhang & Yufei Wang & Xiao Feng, 2021. "A Framework for Design and Operation Optimization for Utilizing Low-Grade Industrial Waste Heat in District Heating and Cooling," Energies, MDPI, vol. 14(8), pages 1-21, April.
- Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
- Abugabbara, Marwan & Javed, Saqib & Johansson, Dennis, 2022. "A simulation model for the design and analysis of district systems with simultaneous heating and cooling demands," Energy, Elsevier, vol. 261(PA).
- Li, Longquan & Liu, Zhiqiang & Deng, Chengwei & Ren, Jingzheng & Ji, Feng & Sun, Yi & Xiao, Zhenyu & Yang, Sheng, 2021. "Conventional and advanced exergy analyses of a vehicular proton exchange membrane fuel cell power system," Energy, Elsevier, vol. 222(C).
- Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
- Anna Grzegórska & Piotr Rybarczyk & Valdas Lukoševičius & Joanna Sobczak & Andrzej Rogala, 2021. "Smart Asset Management for District Heating Systems in the Baltic Sea Region," Energies, MDPI, vol. 14(2), pages 1-25, January.
- Caliskan, Hakan & Açıkkalp, Emin & Rostamnejad Takleh, H. & Zare, V., 2023. "Advanced, extended and combined extended-advanced exergy analyses of a novel geothermal powered combined cooling, heating and power (CCHP) system," Renewable Energy, Elsevier, vol. 206(C), pages 125-134.
- Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
More about this item
Keywords
district heating; waste heat; advanced exergy analysis; cogeneration; cement industry; thermal power plants;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4766-:d:609194. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.