IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4724-d608020.html
   My bibliography  Save this article

Cold Ageing of NMC811 Lithium-ion Batteries

Author

Listed:
  • Chongming Wang

    (Institute for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK)

  • Tazdin Amietszajew

    (Institute for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK)

  • Ruth Carvajal

    (Institute for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK)

  • Yue Guo

    (Institute for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK)

  • Zahoor Ahmed

    (Institute for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK)

  • Cheng Zhang

    (Institute for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK)

  • Gregory Goodlet

    (Johnson Matthey, Reading RG4 9NH, UK)

  • Rohit Bhagat

    (Institute for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK)

Abstract

In the application of electric vehicles, LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811)-a Ni-rich cathode has the potential of replacing LiNiMnCoO 2 (NMC111) due to its high energy density. However, NMC811 features relatively poor structural and thermal stabilities, which affect its cycle life. This study aims to address the limited data availability research gap on NMC811 low-temperature degradation. We aged commercial 21700 NMC811 cells at 0 °C under 0.5 C and 1 C current rates. After 200 cycles, post-mortem visual, scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy, the inspections of harvested electrodes were conducted. In just 200 cold cycles, capacity drops of 25% and 49% were observed in cells aged at 1 C and 0.5 C, respectively. The fast degradation at low temperatures is largely due to lithium plating at the anode side during the charging process. The surprisingly better performance at 1 C is related to enhanced cell self-heating. After subsequent 3-month storage, the cells that experienced 200 cycles at 0 °C and 0.5 C became faulty (voltage: ≈ 0 V), possibly due to cell lithium dendrites and micro short circuits. This work demonstrates that NMC811 suffers from poor cold ageing performance and subsequent premature end-of-life.

Suggested Citation

  • Chongming Wang & Tazdin Amietszajew & Ruth Carvajal & Yue Guo & Zahoor Ahmed & Cheng Zhang & Gregory Goodlet & Rohit Bhagat, 2021. "Cold Ageing of NMC811 Lithium-ion Batteries," Energies, MDPI, vol. 14(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4724-:d:608020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Opitz, A. & Badami, P. & Shen, L. & Vignarooban, K. & Kannan, A.M., 2017. "Can Li-Ion batteries be the panacea for automotive applications?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 685-692.
    2. Duffner, F. & Wentker, M. & Greenwood, M. & Leker, J., 2020. "Battery cost modeling: A review and directions for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Upender Rao Koleti & Ashwin Rajan & Chaou Tan & Sanghamitra Moharana & Truong Quang Dinh & James Marco, 2020. "A Study on the Influence of Lithium Plating on Battery Degradation," Energies, MDPI, vol. 13(13), pages 1-22, July.
    4. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foad H. Gandoman & Emad M. Ahmed & Ziad M. Ali & Maitane Berecibar & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "Reliability Evaluation of Lithium-Ion Batteries for E-Mobility Applications from Practical and Technical Perspectives: A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    2. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    3. Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    5. Li, Yong & Wang, Liye & Feng, Yanbiao & Liao, Chenglin & Yang, Jue, 2024. "An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework," Energy, Elsevier, vol. 298(C).
    6. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    7. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    8. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Sai Vinayak Ganesh & Matilde D’Arpino, 2023. "Critical Comparison of Li-Ion Aging Models for Second Life Battery Applications," Energies, MDPI, vol. 16(7), pages 1-23, March.
    10. Naseri, F. & Karimi, S. & Farjah, E. & Schaltz, E., 2022. "Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Vandepaer, Laurent & Cloutier, Julie & Amor, Ben, 2017. "Environmental impacts of Lithium Metal Polymer and Lithium-ion stationary batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 46-60.
    12. Bernhard Faessler & Aleksander Bogunović Jakobsen, 2021. "Autonomous Operation of Stationary Battery Energy Storage Systems—Optimal Storage Design and Economic Potential," Energies, MDPI, vol. 14(5), pages 1-12, March.
    13. Fan, Chuanxin & O’Regan, Kieran & Li, Liuying & Higgins, Matthew D. & Kendrick, Emma & Widanage, Widanalage D., 2022. "Data-driven identification of lithium-ion batteries: A nonlinear equivalent circuit model with diffusion dynamics," Applied Energy, Elsevier, vol. 321(C).
    14. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    15. Yongsheng Shi & Tailin Li & Leicheng Wang & Hongzhou Lu & Yujun Hu & Beichen He & Xinran Zhai, 2023. "A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory," Energies, MDPI, vol. 16(16), pages 1-16, August.
    16. Cipek, Mihael & Pavković, Danijel & Krznar, Matija & Kljaić, Zdenko & Mlinarić, Tomislav Josip, 2021. "Comparative analysis of conventional diesel-electric and hypothetical battery-electric heavy haul locomotive operation in terms of fuel savings and emissions reduction potentials," Energy, Elsevier, vol. 232(C).
    17. Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).
    18. Soham Neupane & Morteza Alipanah & Derek Barnes & Xianglin Li, 2018. "Heat Generation Characteristics of LiFePO 4 Pouch Cells with Passive Thermal Management," Energies, MDPI, vol. 11(5), pages 1-14, May.
    19. Dapai Shi & Jingyuan Zhao & Chika Eze & Zhenghong Wang & Junbin Wang & Yubo Lian & Andrew F. Burke, 2023. "Cloud-Based Artificial Intelligence Framework for Battery Management System," Energies, MDPI, vol. 16(11), pages 1-21, May.
    20. Hatherall, Ollie & Barai, Anup & Niri, Mona Faraji & Wang, Zeyuan & Marco, James, 2024. "Novel battery power capability assessment for improved eVTOL aircraft landing," Applied Energy, Elsevier, vol. 361(C).

    More about this item

    Keywords

    lithium-ion battery; NMC811; ageing; cold cycling;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4724-:d:608020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.