IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1243-d146117.html
   My bibliography  Save this article

Heat Generation Characteristics of LiFePO 4 Pouch Cells with Passive Thermal Management

Author

Listed:
  • Soham Neupane

    (Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66046, USA
    These two authors contributed equally to this work.)

  • Morteza Alipanah

    (Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66046, USA
    These two authors contributed equally to this work.)

  • Derek Barnes

    (Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66046, USA)

  • Xianglin Li

    (Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66046, USA)

Abstract

This article experimentally investigates the heat generation characteristics and the effectiveness of passive cooling of commercially available LiFePO 4 (7.25 mm × 160 mm × 227 mm, 19.5 Ah) cells using different cooling materials. The specific heat capacity and the entropy coefficient of the cell are experimentally measured. The heat generation rate of the cell at 1–4 C current rates are also determined using three different methods: (1) the heat absorption calculated from the temperature increase of cooling water; (2) the energy loss calculated from the difference between the operating voltage and open circuit voltage; and (3) the energy loss during a charge-discharge cycle calculated using the voltage difference between charging and discharging. Results show that the heat generation rate estimated from heat absorbed by the water can be underestimated by up to 47.8% because of the temperature gradient within the cell and on the surface. The effectiveness of different passive cooling materials is compared at discharge current rates of 1–3 C. The average increase of the cell surface temperature is 22.6, 17.1, 7.7, 7.2 and 6.4 °C at 3 C (58.5 A) using air, aluminum foam, octadecane, water with aluminum foam and water, respectively.

Suggested Citation

  • Soham Neupane & Morteza Alipanah & Derek Barnes & Xianglin Li, 2018. "Heat Generation Characteristics of LiFePO 4 Pouch Cells with Passive Thermal Management," Energies, MDPI, vol. 11(5), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1243-:d:146117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Opitz, A. & Badami, P. & Shen, L. & Vignarooban, K. & Kannan, A.M., 2017. "Can Li-Ion batteries be the panacea for automotive applications?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 685-692.
    2. Zou, Changfu & Hu, Xiaosong & Wei, Zhongbao & Tang, Xiaolin, 2017. "Electrothermal dynamics-conscious lithium-ion battery cell-level charging management via state-monitored predictive control," Energy, Elsevier, vol. 141(C), pages 250-259.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Niansi & Liu, Xiaoyong & Yu, Bendong & Li, Liang & Xu, Jianqiang & Tan, Qiong, 2021. "Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions," Energy, Elsevier, vol. 219(C).
    2. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    3. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    4. Xu, Meng & Wang, Xia & Zhang, Liwen & Zhao, Peng, 2021. "Comparison of the effect of linear and two-step fast charging protocols on degradation of lithium ion batteries," Energy, Elsevier, vol. 227(C).
    5. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Xiaogang Wu & Siyu Lv & Jizhong Chen, 2017. "Determination of the Optimum Heat Transfer Coefficient and Temperature Rise Analysis for a Lithium-Ion Battery under the Conditions of Harbin City Bus Driving Cycles," Energies, MDPI, vol. 10(11), pages 1-17, October.
    7. Li, Yunjian & Li, Kuining & Xie, Yi & Liu, Jiangyan & Fu, Chunyun & Liu, Bin, 2020. "Optimized charging of lithium-ion battery for electric vehicles: Adaptive multistage constant current–constant voltage charging strategy," Renewable Energy, Elsevier, vol. 146(C), pages 2688-2699.
    8. Vandepaer, Laurent & Cloutier, Julie & Amor, Ben, 2017. "Environmental impacts of Lithium Metal Polymer and Lithium-ion stationary batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 46-60.
    9. Meng, Lingyu & See, K.W. & Wang, Guofa & Wang, Yunpeng & Zhang, Yong & Zang, Caiyun & Xie, Bin, 2022. "Explosion-proof lithium-ion battery pack – In-depth investigation and experimental study on the design criteria," Energy, Elsevier, vol. 249(C).
    10. Bernhard Faessler & Aleksander Bogunović Jakobsen, 2021. "Autonomous Operation of Stationary Battery Energy Storage Systems—Optimal Storage Design and Economic Potential," Energies, MDPI, vol. 14(5), pages 1-12, March.
    11. Yang, Fangfang & Song, Xiangbao & Dong, Guangzhong & Tsui, Kwok-Leung, 2019. "A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries," Energy, Elsevier, vol. 171(C), pages 1173-1182.
    12. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    13. Zubi, Ghassan & Fracastoro, Gian Vincenzo & Lujano-Rojas, Juan M. & El Bakari, Khalil & Andrews, David, 2019. "The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions," Renewable Energy, Elsevier, vol. 132(C), pages 1425-1435.
    14. Ruiz, V. & Pfrang, A. & Kriston, A. & Omar, N. & Van den Bossche, P. & Boon-Brett, L., 2018. "A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1427-1452.
    15. Trocino, Stefano & Lo Faro, Massimiliano & Zignani, Sabrina Campagna & Antonucci, Vincenzo & Aricò, Antonino Salvatore, 2019. "High performance solid-state iron-air rechargeable ceramic battery operating at intermediate temperatures (500–650 °C)," Applied Energy, Elsevier, vol. 233, pages 386-394.
    16. Yin, Yilin & Choe, Song-Yul, 2020. "Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control," Applied Energy, Elsevier, vol. 271(C).
    17. Fanqi Meng & Xiaohong Su, 2017. "Reducing WCET Overestimations by Correcting Errors in Loop Bound Constraints," Energies, MDPI, vol. 10(12), pages 1-18, December.
    18. Ardani, M.I. & Patel, Y. & Siddiq, A. & Offer, G.J. & Martinez-Botas, R.F., 2018. "Combined experimental and numerical evaluation of the differences between convective and conductive thermal control on the performance of a lithium ion cell," Energy, Elsevier, vol. 144(C), pages 81-97.
    19. Duffner, F. & Wentker, M. & Greenwood, M. & Leker, J., 2020. "Battery cost modeling: A review and directions for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    20. Mengshu Sun & Yuankun Xue & Paul Bogdan & Jian Tang & Yanzhi Wang & Xue Lin, 2018. "Hierarchical and hybrid energy storage devices in data centers: Architecture, control and provisioning," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1243-:d:146117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.