IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4552-d602985.html
   My bibliography  Save this article

Improvement of the Combustion Completeness of Hydrogen Jet Flames within a Mesoscale Tube under Zero Gravity

Author

Listed:
  • Junjie Hong

    (China Tabacco Hubei Industrial Limited Liability Company, Wuhan 430014, China)

  • Ming Zhao

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Lei Liu

    (China Tabacco Hubei Industrial Limited Liability Company, Wuhan 430014, China)

  • Qiuxiang Shi

    (China Tabacco Hubei Industrial Limited Liability Company, Wuhan 430014, China)

  • Xi Xiao

    (China Tabacco Hubei Industrial Limited Liability Company, Wuhan 430014, China)

  • Aiwu Fan

    (State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Microjet hydrogen flames can be directly used as micro heat sources or can be applied in micro propulsion systems. In our previous study, under zero gravity and without an active air supply, the combustion completeness of hydrogen jet flames within a mesoscale tube with an inner diameter of 5 mm was very low. In this study, we were dedicated to improving the combustion efficiency by using a convergent nozzle (tilt angle was around 68°) instead of the previous straight one, and the exit diameter was 0.8 or 0.4 mm. The numerical results demonstrate that the maximum combustion efficiency in the case of d= 0.8 mm was only around 15%; however, the peak value for the case of d = 0.4 mm was around 36%. This happened because with d = 0.4 mm, the fuel jet velocity was around four times that of the d = 0.8 mm case. Hence, the negative pressure in the combustor of d = 0.4 mm decreased to a much lower level compared to that of d = 0.8 mm, which led to an enhancement of the air entrainment ratio. However, the highest combustion efficiency of d = 0.4 mm was still below 36%; therefore, a slightly larger tube or an even smaller nozzle exit diameter will be necessary for further improvements to the combustion efficiency.

Suggested Citation

  • Junjie Hong & Ming Zhao & Lei Liu & Qiuxiang Shi & Xi Xiao & Aiwu Fan, 2021. "Improvement of the Combustion Completeness of Hydrogen Jet Flames within a Mesoscale Tube under Zero Gravity," Energies, MDPI, vol. 14(15), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4552-:d:602985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vijayan, V. & Gupta, A.K., 2010. "Flame dynamics of a meso-scale heat recirculating combustor," Applied Energy, Elsevier, vol. 87(12), pages 3718-3728, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aravind Muraleedharan & Jithin Edacheri Veetil & Akram Mohammad & Sudarshan Kumar & Ratna Kishore Velamati, 2021. "Effect of Burner Wall Material on Microjet Hydrogen Diffusion Flames near Extinction: A Numerical Study," Energies, MDPI, vol. 14(24), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirsat, V. & Gupta, A.K., 2011. "A review of progress in heat recirculating meso-scale combustors," Applied Energy, Elsevier, vol. 88(12), pages 4294-4309.
    2. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    3. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    4. Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
    5. Akhtar, Saad & Kurnia, Jundika C. & Shamim, Tariq, 2015. "A three-dimensional computational model of H2–air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application," Applied Energy, Elsevier, vol. 152(C), pages 47-57.
    6. Zuo, Wei & E, Jiaqiang & Liu, Haili & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2016. "Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer," Applied Energy, Elsevier, vol. 184(C), pages 77-87.
    7. Liu, Zeqi & Liu, Wanhao & Du, Yiqing & Fan, Aiwu, 2024. "Experimental study on the propagation characteristics of non-premixed H2/air flames in a curved micro-combustor," Energy, Elsevier, vol. 299(C).
    8. Gurunadh Velidi & Chun Sang Yoo, 2023. "A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges," Energies, MDPI, vol. 16(9), pages 1-44, May.
    9. Wierzbicki, Teresa A. & Lee, Ivan C. & Gupta, Ashwani K., 2014. "Performance of synthetic jet fuels in a meso-scale heat recirculating combustor," Applied Energy, Elsevier, vol. 118(C), pages 41-47.
    10. Vijayan, V. & Gupta, A.K., 2011. "Thermal performance of a meso-scale liquid-fuel combustor," Applied Energy, Elsevier, vol. 88(7), pages 2335-2343, July.
    11. Xiao, Huahua & He, Xuechao & Duan, Qiangling & Luo, Xisheng & Sun, Jinhua, 2014. "An investigation of premixed flame propagation in a closed combustion duct with a 90° bend," Applied Energy, Elsevier, vol. 134(C), pages 248-256.
    12. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    13. Fan, Aiwu & Zhang, He & Wan, Jianlong, 2017. "Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body," Energy, Elsevier, vol. 123(C), pages 252-259.
    14. Shirsat, V. & Gupta, A.K., 2011. "Performance characteristics of methanol and kerosene fuelled meso-scale heat-recirculating combustors," Applied Energy, Elsevier, vol. 88(12), pages 5069-5082.
    15. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    16. Cai, Tao & Tang, Aikun & Zhao, Dan & Zhou, Chen & Huang, Qiuhan, 2020. "Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors," Energy, Elsevier, vol. 193(C).
    17. Akhtar, Saad & Khan, Mohammed N. & Kurnia, Jundika C. & Shamim, Tariq, 2017. "Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications," Applied Energy, Elsevier, vol. 192(C), pages 134-145.
    18. Merotto, L. & Fanciulli, C. & Dondè, R. & De Iuliis, S., 2016. "Study of a thermoelectric generator based on a catalytic premixed meso-scale combustor," Applied Energy, Elsevier, vol. 162(C), pages 346-353.
    19. Rana, Uttam & Chakraborty, Suman & Som, S.K., 2017. "Prediction of flame speed and exergy analysis of premixed flame in a heat recirculating cylindrical micro combustor," Energy, Elsevier, vol. 126(C), pages 658-670.
    20. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4552-:d:602985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.