IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4455-d600127.html
   My bibliography  Save this article

Zero Carbon Building Practices in Aotearoa New Zealand

Author

Listed:
  • Thao Thi Phuong Bui

    (School of Built Environment, Massey University, Auckland 0632, New Zealand)

  • Suzanne Wilkinson

    (School of Built Environment, Massey University, Auckland 0632, New Zealand)

  • Niluka Domingo

    (School of Built Environment, Massey University, Auckland 0632, New Zealand)

  • Casimir MacGregor

    (Building Research Association of New Zealand, Judgeford, Porirua 5240, New Zealand)

Abstract

In the light of climate change, the drive for zero carbon buildings is known as one response to reduce greenhouse gas emissions. Within New Zealand, research on climate change mitigation and environmental impacts of buildings has received renewed attention. However, there has been no detailed investigation of zero carbon building practices. This paper undertakes an exploratory study through the use of semi-structured interviews with government representatives and construction industry experts to examine how the New Zealand construction industry plans and implements zero carbon buildings. The results show that New Zealand’s construction industry is in the early stage of transiting to a net-zero carbon built environment. Key actions to date are focused on devising a way for the industry to develop and deliver zero carbon building projects. Central and local governments play a leading role in driving zero carbon initiatives. Leading construction firms intend to maximise the carbon reduction in building projects by developing a roadmap to achieve the carbon target by 2050 and rethinking the way of designing and constructing buildings. The research results provide an insight into the initial practices and policy implications for the uptake of zero carbon buildings in Aotearoa New Zealand.

Suggested Citation

  • Thao Thi Phuong Bui & Suzanne Wilkinson & Niluka Domingo & Casimir MacGregor, 2021. "Zero Carbon Building Practices in Aotearoa New Zealand," Energies, MDPI, vol. 14(15), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4455-:d:600127
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4455/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4455/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lai, Xiaodong & Liu, Jixian & Shi, Qian & Georgiev, Georgi & Wu, Guangdong, 2017. "Driving forces for low carbon technology innovation in the building industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 299-315.
    2. Leila Niamir & Gregor Kiesewetter & Fabian Wagner & Wolfgang Schöpp & Tatiana Filatova & Alexey Voinov & Hans Bressers, 2020. "Assessing the macroeconomic impacts of individual behavioral changes on carbon emissions," Climatic Change, Springer, vol. 158(2), pages 141-160, January.
    3. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    4. Jones, Phil & Hou, Shan Shan & Li, Xiaojun, 2015. "Towards zero carbon design in offices: Integrating smart facades, ventilation, and surface heating and cooling," Renewable Energy, Elsevier, vol. 73(C), pages 69-76.
    5. Amanda Ball & Ian Mason & Suzana Grubnic & Phil Hughes, 2009. "The Carbon Neutral Public Sector," Public Management Review, Taylor & Francis Journals, vol. 11(5), pages 575-600, September.
    6. McLeod, Robert S. & Hopfe, Christina J. & Rezgui, Yacine, 2012. "An investigation into recent proposals for a revised definition of zero carbon homes in the UK," Energy Policy, Elsevier, vol. 46(C), pages 25-35.
    7. Killip, Gavin, 2013. "Products, practices and processes: exploring the innovation potential for low-carbon housing refurbishment among small and medium-sized enterprises (SMEs) in the UK construction industry," Energy Policy, Elsevier, vol. 62(C), pages 522-530.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Plachinda & Julia Morgan & Maria Coelho, 2022. "Towards Net Zero: Modeling Approach to the Right-Sized Facilities," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    2. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalia Streimikiene & Tomas Balezentis, 2020. "Willingness to Pay for Renovation of Multi-Flat Buildings and to Share the Costs of Renovation," Energies, MDPI, vol. 13(11), pages 1-16, May.
    2. O’Keeffe, Juliette M. & Gilmour, Daniel & Simpson, Edward, 2016. "A network approach to overcoming barriers to market engagement for SMEs in energy efficiency initiatives such as the Green Deal," Energy Policy, Elsevier, vol. 97(C), pages 582-590.
    3. Excell, Lauren E. & Jain, Rishee K., 2024. "Examining the impact of energy efficiency retrofits and vegetation on energy performance of institutional buildings: An equity-driven analysis," Applied Energy, Elsevier, vol. 357(C).
    4. Dorothea GREILING & Birgit GRUB, 2015. "Towards Citizen Accountability Of Local Public Enterprises," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 86(4), pages 641-655, December.
    5. Lee, Haksung & Ozaki, Akihito, 2018. "Sensitivity analysis for optimization of renewable-energy-based air-circulation-type temperature-control system," Applied Energy, Elsevier, vol. 230(C), pages 317-329.
    6. Danuta Miłaszewicz, 2022. "Survey Results on Using Nudges for Choice of Green-Energy Supplier," Energies, MDPI, vol. 15(7), pages 1-19, April.
    7. Jingxiao Zhang & Haiyan Xie & Hui Li & Rose Timothy & Si Pu & Quanxue Deng & Weixing Jin, 2018. "Integrated Framework of Growth Management for Identification of Service Innovation Levels and Priorities," Sustainability, MDPI, vol. 10(9), pages 1-33, September.
    8. Dalia Streimikiene & Tomas Balezentis, 2019. "Innovative Policy Schemes to Promote Renovation of Multi-Flat Residential Buildings and Address the Problems of Energy Poverty of Aging Societies in Former Socialist Countries," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    9. Jacek Michalak & Bartosz Michałowski, 2022. "Understanding Sustainability of Construction Products: Answers from Investors, Contractors, and Sellers of Building Materials," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    10. Taqdees Fatima & Bingxiang Li & Shahab Alam Malik & Dan Zhang, 2023. "The Spatial Effect of Industrial Intelligence on High-Quality Green Development of Industry under Environmental Regulations and Low Carbon Intensity," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    11. Maria Cristina Collivignarelli & Giacomo Cillari & Paola Ricciardi & Marco Carnevale Miino & Vincenzo Torretta & Elena Cristina Rada & Alessandro Abbà, 2020. "The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review," Sustainability, MDPI, vol. 12(19), pages 1-34, September.
    12. Marin Pellan & Denise Almeida & Mathilde Louërat & Guillaume Habert, 2024. "Integrating Consumption-Based Metrics into Sectoral Carbon Budgets to Enhance Sustainability Monitoring of Building Activities," Sustainability, MDPI, vol. 16(16), pages 1-25, August.
    13. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    14. Anis Radzi, 2015. "A survey of expert attitudes on understanding and governing energy autonomy at the local level," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 397-405, September.
    15. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    16. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Francesco Montana & Kai Kanafani & Kim B. Wittchen & Harpa Birgisdottir & Sonia Longo & Maurizio Cellura & Eleonora Riva Sanseverino, 2020. "Multi-Objective Optimization of Building Life Cycle Performance. A Housing Renovation Case Study in Northern Europe," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    18. Gonçalves, Juliana E. & Montazeri, Hamid & van Hooff, Twan & Saelens, Dirk, 2021. "Performance of building integrated photovoltaic facades: Impact of exterior convective heat transfer," Applied Energy, Elsevier, vol. 287(C).
    19. Forde, Joe & Hopfe, Christina J. & McLeod, Robert S. & Evins, Ralph, 2020. "Temporal optimization for affordable and resilient Passivhaus dwellings in the social housing sector," Applied Energy, Elsevier, vol. 261(C).
    20. Marco Scherz & Antonija Ana Wieser & Alexander Passer & Helmuth Kreiner, 2022. "Implementation of Life Cycle Assessment (LCA) in the Procurement Process of Buildings: A Systematic Literature Review," Sustainability, MDPI, vol. 14(24), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4455-:d:600127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.