Numerical Study of Thermal-Hydraulic Performance of a New Spiral Z-Type PCHE for Supercritical CO 2 Brayton Cycle
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ahn, Yoonhan & Lee, Jekyoung & Kim, Seong Gu & Lee, Jeong Ik & Cha, Jae Eun & Lee, Si-Woo, 2015. "Design consideration of supercritical CO2 power cycle integral experiment loop," Energy, Elsevier, vol. 86(C), pages 115-127.
- Hu, Lian & Chen, Deqi & Huang, Yanping & Li, Le & Cao, Yiding & Yuan, Dewen & Wang, Junfeng & Pan, Liangming, 2015. "Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor," Energy, Elsevier, vol. 89(C), pages 874-886.
- Liu, Guangxu & Huang, Yanping & Wang, Junfeng & Liu, Ruilong, 2020. "A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wei-Hsin Chen & Yi-Wei Li & Min-Hsing Chang & Chih-Che Chueh & Veeramuthu Ashokkumar & Lip Huat Saw, 2022. "Operation and Multi-Objective Design Optimization of a Plate Heat Exchanger with Zigzag Flow Channel Geometry," Energies, MDPI, vol. 15(21), pages 1-22, November.
- Haicai Lyu & Han Wang & Qincheng Bi & Fenglei Niu, 2022. "Experimental Investigation on Heat Transfer and Pressure Drop of Supercritical Carbon Dioxide in a Mini Vertical Upward Flow," Energies, MDPI, vol. 15(17), pages 1-14, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Park, Joo Hyun & Park, Hyun Sun & Kwon, Jin Gyu & Kim, Tae Ho & Kim, Moo Hwan, 2018. "Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors," Energy, Elsevier, vol. 160(C), pages 520-535.
- Guo, Jiangfeng, 2016. "Design analysis of supercritical carbon dioxide recuperator," Applied Energy, Elsevier, vol. 164(C), pages 21-27.
- Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
- Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
- Das, Mainak & Reddy, K.S., 2025. "Modelling and optimization of combined supercritical carbon dioxide Brayton cycle and organic Rankine cycle for electricity and hydrogen production," Applied Energy, Elsevier, vol. 377(PC).
- Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
- Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
- Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
- Dang, Chaolei & Xu, Jing & Chen, Zhichao & Cheng, Kunlin & Qin, Jiang & Liu, Guodong, 2024. "Comparative study of different layouts in the closed-Brayton-cycle-based segmented cooling thermal management system for scramjets," Energy, Elsevier, vol. 301(C).
- Yang, D.L. & Tang, G.H. & Fan, Y.H. & Li, X.L. & Wang, S.Q., 2020. "Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler," Energy, Elsevier, vol. 197(C).
- Chen, Wangnan & Ma, Qiyuan & Liu, Xinyi & Cheng, Yang & Wang, Qiuwang & Ma, Ting, 2024. "Adaptability analysis of flow and heat transfer multi-scale numerical method for printed circuit heat exchanger," Energy, Elsevier, vol. 311(C).
- Pan, Lisheng & Ma, Yuejing & Li, Teng & Li, Huixin & Li, Bing & Wei, Xiaolin, 2019. "Investigation on the cycle performance and the combustion characteristic of two CO2-based binary mixtures for the transcritical power cycle," Energy, Elsevier, vol. 179(C), pages 454-463.
- Park, Joo Hyun & Bae, Sung Won & Park, Hyun Sun & Cha, Jae Eun & Kim, Moo Hwan, 2018. "Transient analysis and validation with experimental data of supercritical CO2 integral experiment loop by using MARS," Energy, Elsevier, vol. 147(C), pages 1030-1043.
- Guccione, Salvatore & Guedez, Rafael, 2024. "Techno-economic analysis of power-to-heat-to-power plants: Mapping optimal combinations of thermal energy storage and power cycles," Energy, Elsevier, vol. 312(C).
- Cheng, Kunlin & Li, Jiahui & Yu, Jianchi & Fu, Chuanjie & Qin, Jiang & Jing, Wuxing, 2023. "Novel thermoelectric generator enhanced supercritical carbon dioxide closed-Brayton-cycle power generation systems: Performance comparison and configuration optimization," Energy, Elsevier, vol. 284(C).
- Jiang, Dianqiang & Zhang, Dalin & Li, Xinyu & Wang, Shibao & Wang, Chenglong & Qin, Hao & Guo, Yanwen & Tian, Wenxi & Su, G.H. & Qiu, Suizheng, 2022. "Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Kim, Sunjin & Cho, Yeonjoo & Kim, Min Soo & Kim, Minsung, 2018. "Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators," Energy, Elsevier, vol. 147(C), pages 1216-1226.
- Son, Seongmin & Lee, Jeong Ik, 2018. "Application of adjoint sensitivity analysis method to supercritical CO2 power cycle optimization," Energy, Elsevier, vol. 147(C), pages 1153-1164.
- Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
More about this item
Keywords
printed circuit heat exchanger; Z-type; supercritical CO 2 Brayton cycle; numerical simulation; spiral structure; segmental design method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4417-:d:599158. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.