IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4402-d598537.html
   My bibliography  Save this article

Assessment of Energy Transition Policy in Taiwan—A View of Sustainable Development Perspectives

Author

Listed:
  • Chun-Kai Wang

    (Taiwan Research Institute, New Taipei City 251, Taiwan)

  • Chien-Ming Lee

    (Institute of Natural Resources Management, National Taipei University, New Taipei City 23741, Taiwan)

  • Yue-Rong Hong

    (Department of Information Management, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan)

  • Kan Cheng

    (Taiwan Research Institute, New Taipei City 251, Taiwan)

Abstract

Energy transition has become a priority for adaptive policy and measures taken in response to climate change around the world. This is an opportunity and a challenge for the Taiwan government to establish a climate-resilient power generation mixed to ensure electricity security as well as climate change mitigation. This study adopted a sustainable development perspective and applied optimal control theory to establish a cost-effective model to evaluate a long-term (2050), climate-resilient power generation mix for Taiwan. Furthermore, this study applies the STIRPAT approach to predict the demand of electricity by 2050 for the demand side management. The results not only showed the share of various power generation mixed, but also recommended the trajectory of electricity saving by 2050.

Suggested Citation

  • Chun-Kai Wang & Chien-Ming Lee & Yue-Rong Hong & Kan Cheng, 2021. "Assessment of Energy Transition Policy in Taiwan—A View of Sustainable Development Perspectives," Energies, MDPI, vol. 14(15), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4402-:d:598537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Awerbuch, Shimon & Yang, Spencer, 2007. "Efficient electricity generating portfolios for Europe: maximising energy security and climate change mitigation," EIB Papers 7/2007, European Investment Bank, Economics Department.
    2. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    3. deLlano-Paz, Fernando & Martínez Fernandez, Paulino & Soares, Isabel, 2016. "Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues," Energy, Elsevier, vol. 115(P2), pages 1347-1360.
    4. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    5. Ryu, Hanee & Dorjragchaa, Shonkhor & Kim, Yeonbae & Kim, Kyunam, 2014. "Electricity-generation mix considering energy security and carbon emission mitigation: Case of Korea and Mongolia," Energy, Elsevier, vol. 64(C), pages 1071-1079.
    6. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    7. Fernando deLlano-Paz & Paulino Martinez Fernandez & Isabel Soares, 2016. "The effects of different CCS technological scenarios on EU low-carbon generation mix," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(5), pages 1477-1500, October.
    8. Chen, Fung-Fei & Chou, Seng-Cho & Lu, Tai-Ken, 2013. "Scenario analysis of the new energy policy for Taiwan's electricity sector until 2025," Energy Policy, Elsevier, vol. 61(C), pages 162-171.
    9. Min, Daiki & Chung, Jaewoo, 2013. "Evaluation of the long-term power generation mix: The case study of South Korea's energy policy," Energy Policy, Elsevier, vol. 62(C), pages 1544-1552.
    10. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    11. Portugal-Pereira, Joana & Esteban, Miguel, 2014. "Implications of paradigm shift in Japan’s electricity security of supply: A multi-dimensional indicator assessment," Applied Energy, Elsevier, vol. 123(C), pages 424-434.
    12. Wu, Jung-Hua & Huang, Yun-Hsun, 2014. "Electricity portfolio planning model incorporating renewable energy characteristics," Applied Energy, Elsevier, vol. 119(C), pages 278-287.
    13. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Chun-Chiang & Chang, Kuei-Feng & Lin, Jin-Xu & Lee, Tsung-Chen & Lin, Shih-Mo, 2022. "Toward green transition in the post Paris Agreement era: The case of Taiwan," Energy Policy, Elsevier, vol. 165(C).
    2. Jin-Li Hu, 2022. "Green Energy Economies Are Continually On-Going," Energies, MDPI, vol. 15(13), pages 1-3, June.
    3. Hon Chung Lau & Steve C. Tsai, 2022. "A Decarbonization Roadmap for Taiwan and Its Energy Policy Implications," Sustainability, MDPI, vol. 14(14), pages 1-34, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun-Kai Wang & Chien-Ming Lee, 2024. "Power System Decarbonization Assessment: A Case Study from Taiwan," Energies, MDPI, vol. 17(4), pages 1-19, February.
    2. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    3. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    4. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    5. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    6. Heshmati, Almas & Kumbhakar, Subal C. & Sun, Kai, 2014. "Estimation of productivity in Korean electric power plants: A semiparametric smooth coefficient model," Energy Economics, Elsevier, vol. 45(C), pages 491-500.
    7. Fang, Hong & Wang, Xu & Song, Wenyan, 2020. "Technology selection for photovoltaic cell from sustainability perspective: An integrated approach," Renewable Energy, Elsevier, vol. 153(C), pages 1029-1041.
    8. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    9. Tuyet Thi Anh Nguyen & Shuo-Yan Chou, 2022. "Fusion of interval-valued neutrosophic sets and financial assessment for optimal renewable energy portfolios with uncertainties," Energy & Environment, , vol. 33(4), pages 783-808, June.
    10. Matsumoto, Ken’ichi & Shiraki, Hiroto, 2018. "Energy security performance in Japan under different socioeconomic and energy conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 391-401.
    11. Rekha Guchhait & Biswajit Sarkar, 2023. "Increasing Growth of Renewable Energy: A State of Art," Energies, MDPI, vol. 16(6), pages 1-29, March.
    12. Shang, Nan & Ye, Chengjin & Ding, Yi & Tu, Teng & Huo, Baofeng, 2019. "Risk-based optimal power portfolio methodology for generation companies considering cross-region generation right trade," Applied Energy, Elsevier, vol. 254(C).
    13. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    14. Magdalena Krysiak & Aldona Kluczek, 2021. "A Multifaceted Challenge to Enhance Multicriteria Decision Support for Energy Policy," Energies, MDPI, vol. 14(14), pages 1-20, July.
    15. Çolak, Murat & Kaya, İhsan, 2017. "Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 840-853.
    16. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2018. "Pollutant versus non-pollutant generation technologies: a CML-analogous analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 199-212, December.
    17. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    18. Yu, Shiwei & Zhou, Shuangshuang & Zheng, Shuhong & Li, Zhenxi & Liu, Lancui, 2019. "Developing an optimal renewable electricity generation mix for China using a fuzzy multi-objective approach," Renewable Energy, Elsevier, vol. 139(C), pages 1086-1098.
    19. Zaman, Rafia & Brudermann, Thomas & Kumar, S. & Islam, Nazrul, 2018. "A multi-criteria analysis of coal-based power generation in Bangladesh," Energy Policy, Elsevier, vol. 116(C), pages 182-192.
    20. Zhang, Mingming & Song, Wenwen & Liu, Liyun & Zhou, Dequn, 2024. "Optimal investment portfolio strategy for carbon neutrality of power enterprises," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4402-:d:598537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.