IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i6p758-d99951.html
   My bibliography  Save this article

Modified Synchronous Reference Frame Based Shunt Active Power Filter with Fuzzy Logic Control Pulse Width Modulation Inverter

Author

Listed:
  • Suleiman Musa

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Department of Electrical and Electronics Engineering, College of Engineering, Kaduna Polytechnic, P.M.B. 2021 Kaduna, Nigeria)

  • Mohd Amran Mohd Radzi

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Hashim Hizam

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Noor Izzri Abdul Wahab

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Yap Hoon

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Muhammad Ammirrul Atiqi Mohd Zainuri

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

Abstract

Harmonic distortion in power networks has greatly reduced power quality and this affects system stability. In order to mitigate this power quality issue, the shunt active power filter (SAPF) has been widely applied and it is proven to be the best solution to current harmonics. This paper evaluates the performance of the modified synchronous reference frame extraction (MSRF) algorithm with fuzzy logic controller (FLC) based current control pulse width modulation (PWM) inverter of three-phase three-wire SAPF to mitigate current harmonics. The proposed FLC is designed with a reduced amount of membership functions (MFs) and rules, and thus significantly reduces the computational time and memory size. Modeling and simulations of SAPF are carried out using MATLAB/Simulink R2012a with the power system toolbox under steady-state condition, and this is followed with hardware implementation using a TMS320F28335 digital signal processor (DSP), Specrum Digital Inc., Stafford, TX, USA. The results obtained demonstrate a good and satisfactory response to mitigate the harmonics in the system. The total harmonic distortion (THD) for the system has been reduced from 25.60% to 0.92% and 1.41% in the simulation study with and without FLC, respectively. Similarly for the experimental study, the SAPF can compensate for the three-phase load current by reducing THD to 5.07% and 7.4% with and without FLC, respectively.

Suggested Citation

  • Suleiman Musa & Mohd Amran Mohd Radzi & Hashim Hizam & Noor Izzri Abdul Wahab & Yap Hoon & Muhammad Ammirrul Atiqi Mohd Zainuri, 2017. "Modified Synchronous Reference Frame Based Shunt Active Power Filter with Fuzzy Logic Control Pulse Width Modulation Inverter," Energies, MDPI, vol. 10(6), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:758-:d:99951
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/6/758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/6/758/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdallah El Ghaly & Mohamad Tarnini & Nazih Moubayed & Khaled Chahine, 2022. "A Filter-Less Time-Domain Method for Reference Signal Extraction in Shunt Active Power Filters," Energies, MDPI, vol. 15(15), pages 1-16, July.
    2. Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim & Jiashen Teh & Ching-Ming Lai, 2018. "Photovoltaic Integrated Shunt Active Power Filter with Simpler ADALINE Algorithm for Current Harmonic Extraction," Energies, MDPI, vol. 11(5), pages 1-22, May.
    3. Jiang Zeng & Lin Yang & Yuchang Ling & Haoping Chen & Zhonglong Huang & Tao Yu & Bo Yang, 2018. "Smoothly Transitive Fixed Frequency Hysteresis Current Control Based on Optimal Voltage Space Vector," Energies, MDPI, vol. 11(7), pages 1-20, July.
    4. Khaled Chahine & Mohamad Tarnini & Nazih Moubayed & Abdallah El Ghaly, 2023. "Power Quality Enhancement of Grid-Connected Renewable Systems Using a Matrix-Pencil-Based Active Power Filter," Sustainability, MDPI, vol. 15(1), pages 1-19, January.
    5. Ramon Guzmán & Luís García de Vicuña & Miguel Castilla & Jaume Miret & Antonio Camacho, 2017. "Finite Control Set Model Predictive Control for a Three-Phase Shunt Active Power Filter with a Kalman Filter-Based Estimation," Energies, MDPI, vol. 10(10), pages 1-14, October.
    6. Mohamed Redha Rezoug & Rachid Chenni & Djamel Taibi, 2018. "Fuzzy Logic-Based Perturb and Observe Algorithm with Variable Step of a Reference Voltage for Solar Permanent Magnet Synchronous Motor Drive System Fed by Direct-Connected Photovoltaic Array," Energies, MDPI, vol. 11(2), pages 1-15, February.
    7. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.
    8. Alimuddin Alimuddin & Ria Arafiyah & Irma Saraswati & Rocky Alfanz & Partogi Hasudungan & Taufik Taufik, 2021. "Development and Performance Study of Temperature and Humidity Regulator in Baby Incubator Using Fuzzy-PID Hybrid Controller," Energies, MDPI, vol. 14(20), pages 1-21, October.
    9. Yu Wang & Yuewu Wang & Si-Zhe Chen & Guidong Zhang & Yun Zhang, 2018. "A Simplified Minimum DC-Link Voltage Control Strategy for Shunt Active Power Filters," Energies, MDPI, vol. 11(9), pages 1-14, September.
    10. Radek Martinek & Jaroslav Rzidky & Rene Jaros & Petr Bilik & Martina Ladrova, 2019. "Least Mean Squares and Recursive Least Squares Algorithms for Total Harmonic Distortion Reduction Using Shunt Active Power Filter Control," Energies, MDPI, vol. 12(8), pages 1-26, April.
    11. Sarawut Janpong & Kongpol Areerak & Kongpan Areerak, 2021. "Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network," Energies, MDPI, vol. 14(14), pages 1-21, July.
    12. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2018. "A Dual-Function Instantaneous Power Theory for Operation of Three-Level Neutral-Point-Clamped Inverter-Based Shunt Active Power Filter," Energies, MDPI, vol. 11(6), pages 1-17, June.
    13. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    14. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:758-:d:99951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.