IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4164-d591794.html
   My bibliography  Save this article

Thermal Analysis of the Medium Voltage Cable

Author

Listed:
  • Tomasz Szczegielniak

    (Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland)

  • Dariusz Kusiak

    (Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland)

  • Paweł Jabłoński

    (Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland)

Abstract

The use of high voltage power cables in distribution and transmission networks is still increasing. As a result, the research on the electrical performance of cable lines is still up to date. In the paper, an analytical method of determining the power losses and the temperature distribution in the medium voltage cable was proposed. The main feature of the method is direct including the skin and proximity effects. Then the Joule law is used to express the power losses in the conductor and screen, and the Fourier-Kirchhoff equation is applied to find out the temperature distribution in the cable. The research was focused on a cable with isolated screen and return current in the screen taken into account. The proposed method was tested by using the commercial COMSOL software(5.6/COMSOL AB, Stockholm, Sweden) as well as by carrying out laboratory measurements. Furthermore, the results obtained via the proposed method were compared with those given in literature. The differences between the temperature values calculated by the analytical method, numerical computations and obtained experimentally do not exceed 10%. The proposed analytical method is suitable in prediction the temperature of the power cables with good accuracy.

Suggested Citation

  • Tomasz Szczegielniak & Dariusz Kusiak & Paweł Jabłoński, 2021. "Thermal Analysis of the Medium Voltage Cable," Energies, MDPI, vol. 14(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4164-:d:591794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4164/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4164/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pengyu Wang & Gang Liu & Hui Ma & Yigang Liu & Tao Xu, 2017. "Investigation of the Ampacity of a Prefabricated Straight-Through Joint of High Voltage Cable," Energies, MDPI, vol. 10(12), pages 1-17, December.
    2. Bartosz Rozegnał & Paweł Albrechtowicz & Dominik Mamcarz & Monika Rerak & Maciej Skaza, 2021. "The Power Losses in Cable Lines Supplying Nonlinear Loads," Energies, MDPI, vol. 14(5), pages 1-15, March.
    3. WenWei Zhu & YiFeng Zhao & ZhuoZhan Han & XiangBing Wang & YanFeng Wang & Gang Liu & Yue Xie & NingXi Zhu, 2019. "Thermal Effect of Different Laying Modes on Cross-Linked Polyethylene (XLPE) Insulation and a New Estimation on Cable Ampacity," Energies, MDPI, vol. 12(15), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Zaręba & Tomasz Szczegielniak & Paweł Jabłoński, 2023. "Influence of the Skin and Proximity Effects on the Thermal Field in a System of Two Parallel Round Conductors," Energies, MDPI, vol. 16(17), pages 1-20, September.
    2. Bogdan Perka & Karol Piwowarski, 2021. "A Method for Determining the Impact of Ambient Temperature on an Electrical Cable during a Fire," Energies, MDPI, vol. 14(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Fedele & Luigi Pio Di Noia & Renato Rizzo, 2023. "Simple Loss Model of Battery Cables for Fast Transient Thermal Simulation," Energies, MDPI, vol. 16(7), pages 1-13, March.
    2. Jiangjun Ruan & Qinghua Zhan & Liezheng Tang & Ke Tang, 2018. "Real-Time Temperature Estimation of Three-Core Medium-Voltage Cable Joint Based on Support Vector Regression," Energies, MDPI, vol. 11(6), pages 1-18, May.
    3. WenWei Zhu & YiFeng Zhao & ZhuoZhan Han & XiangBing Wang & YanFeng Wang & Gang Liu & Yue Xie & NingXi Zhu, 2019. "Thermal Effect of Different Laying Modes on Cross-Linked Polyethylene (XLPE) Insulation and a New Estimation on Cable Ampacity," Energies, MDPI, vol. 12(15), pages 1-22, August.
    4. Artur Cywiński & Krzysztof Chwastek & Dariusz Kusiak & Paweł Jabłoński, 2020. "Optimization of Spatial Configuration of Multistrand Cable Lines," Energies, MDPI, vol. 13(22), pages 1-22, November.
    5. Jiahong He & Kang He & Longfei Cui, 2019. "Charge-Simulation-Based Electric Field Analysis and Electrical Tree Propagation Model with Defects in 10 kV XLPE Cable Joint," Energies, MDPI, vol. 12(23), pages 1-22, November.
    6. Lei You & Jian Wang & Gang Liu & Hui Ma & Ming Zheng, 2018. "Thermal Rating of Offshore Wind Farm Cables Installed in Ventilated J-Tubes," Energies, MDPI, vol. 11(3), pages 1-14, March.
    7. Gang Liu & Deming Guo & Pengyu Wang & Honglei Deng & Xiaobin Hong & Wenhu Tang, 2018. "Calculation of Equivalent Resistance for Ground Wires Twined with Armor Rods in Contact Terminals," Energies, MDPI, vol. 11(4), pages 1-24, March.
    8. Dariusz Smugala & Michal Bonk, 2023. "Modeling of Inrush Current Surges—LED Strip Drivers Case Study," Energies, MDPI, vol. 16(3), pages 1-18, February.
    9. Fan Yang & Ningxi Zhu & Gang Liu & Hui Ma & Xiaoyu Wei & Chuanliang Hu & Zhenhua Wang & Jiasheng Huang, 2018. "A New Method for Determining the Connection Resistance of the Compression Connector in Cable Joint," Energies, MDPI, vol. 11(7), pages 1-19, June.
    10. Luigi Fortuna & Arturo Buscarino, 2022. "Nonlinear Technologies in Advanced Power Systems: Analysis and Control," Energies, MDPI, vol. 15(14), pages 1-4, July.
    11. Fawu He & Yue Xie & Pengyu Wang & Zhiheng Wu & Shuzhen Bao & Wei Wang & Xiaofeng Xu & Xiaokai Meng & Gang Liu, 2024. "An Improved Analytical Thermal Rating Method for Cable Joints," Energies, MDPI, vol. 17(9), pages 1-15, April.
    12. Heiner Brakelmann & George J. Anders, 2024. "Thermal Analysis of Cable Routes with Joints or Other Discontinuities," Energies, MDPI, vol. 17(16), pages 1-15, August.
    13. Tommaso Bragatto & Alberto Cerretti & Luigi D’Orazio & Fabio Massimo Gatta & Alberto Geri & Marco Maccioni, 2019. "Thermal Effects of Ground Faults on MV Joints and Cables," Energies, MDPI, vol. 12(18), pages 1-15, September.
    14. Xiao-Kai Meng & Yan-Bing Jia & Zhi-Heng Liu & Zhi-Qiang Yu & Pei-Jie Han & Zhu-Mao Lu & Tao Jin, 2022. "High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis," Energies, MDPI, vol. 15(4), pages 1-16, February.
    15. Min Ho Kim & Hyun Jeong Seo & Sang Kyu Lee & Min Chul Lee, 2021. "Influence of Thermal Aging on the Combustion Characteristics of Cables in Nuclear Power Plants," Energies, MDPI, vol. 14(7), pages 1-17, April.
    16. Zhihui Xu & Ming Yang & Huaqing Peng & Yifeng Zhao & Gang Liu, 2023. "Influence of Combined Electrothermal Aging on Dielectric and Thermal Properties of HVAC XLPE Cable," Energies, MDPI, vol. 16(8), pages 1-17, April.
    17. Gang Liu & Yaxun Guo & Yanli Xin & Lei You & Xiaofeng Jiang & Ming Zheng & Wenhu Tang, 2018. "Analysis of Switching Transients during Energization in Large Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-13, February.
    18. Dariusz Smugala & Pawel Ptak & Michal Bonk, 2022. "Simulation Analysis of LED Stripes Drivers’ Influence on Electric Energy Quality," Energies, MDPI, vol. 15(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4164-:d:591794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.