IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6341-d1230777.html
   My bibliography  Save this article

Influence of the Skin and Proximity Effects on the Thermal Field in a System of Two Parallel Round Conductors

Author

Listed:
  • Marek Zaręba

    (Faculty of Electrical Engineering, Technical University of Białystok, Wiejska 45D, 15-351 Białystok, Poland)

  • Tomasz Szczegielniak

    (Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Częstochowa University of Technology, Armii Krajowej 17, 42-200 Częstochowa, Poland)

  • Paweł Jabłoński

    (Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Częstochowa University of Technology, Armii Krajowej 17, 42-200 Częstochowa, Poland)

Abstract

This paper presents a semi-analytical method for determining the distribution of the thermal field in a system of two parallel round conductors, taking into account the skin and proximity effects. The method of a suitably constructed Green’s function was applied to find an analytical expression for the eigenfunctions describing the temperature distributions. In turn, the relevant integrals, which cannot be determined analytically, were calculated numerically. The foundation of the method is the knowledge of the current density distribution in the conductors. As a result, the steady-state distribution of the temperature field in the conductors for various parameter values can be determined. The obtained numerical results were positively verified using the finite element method. Using the developed method, the share of skin and proximity effects in the temperature rise and steady-state current rating was evaluated. Closed analytical formulas were obtained for the AC case with the skin effect taken into account. When the skin depth is smaller than the wire radius, the skin effect has quite a large impact on the conductor temperature. The impact of the proximity effect is much smaller but clearly noticeable when the distance between the wires is smaller than five times the wire radius. In addition, the influence of the value of the heat transfer coefficient on the thermal field of the conductors was also examined.

Suggested Citation

  • Marek Zaręba & Tomasz Szczegielniak & Paweł Jabłoński, 2023. "Influence of the Skin and Proximity Effects on the Thermal Field in a System of Two Parallel Round Conductors," Energies, MDPI, vol. 16(17), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6341-:d:1230777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomasz Szczegielniak & Dariusz Kusiak & Paweł Jabłoński, 2021. "Thermal Analysis of the Medium Voltage Cable," Energies, MDPI, vol. 14(14), pages 1-17, July.
    2. Paweł Jabłoński & Tomasz Szczegielniak & Dariusz Kusiak & Zygmunt Piątek, 2019. "Analytical–Numerical Solution for the Skin and Proximity Effects in Two Parallel Round Conductors," Energies, MDPI, vol. 12(18), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Jabłoński & Marek Zaręba & Tomasz Szczegielniak & Jerzy Gołębiowski, 2024. "Influence of the Skin and Proximity Effects on the Thermal Field in Flat and Trefoil Three-Phase Systems with Round Conductors," Energies, MDPI, vol. 17(7), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bogdan Perka & Karol Piwowarski, 2021. "A Method for Determining the Impact of Ambient Temperature on an Electrical Cable during a Fire," Energies, MDPI, vol. 14(21), pages 1-19, November.
    2. Artur Cywiński & Krzysztof Chwastek & Dariusz Kusiak & Paweł Jabłoński, 2020. "Optimization of Spatial Configuration of Multistrand Cable Lines," Energies, MDPI, vol. 13(22), pages 1-22, November.
    3. Bartosz Rozegnał & Paweł Albrechtowicz & Dominik Mamcarz & Monika Rerak & Maciej Skaza, 2021. "The Power Losses in Cable Lines Supplying Nonlinear Loads," Energies, MDPI, vol. 14(5), pages 1-15, March.
    4. Artur Cywiński & Krzysztof Chwastek, 2021. "A Multiphysics Analysis of Coupled Electromagnetic-Thermal Phenomena in Cable Lines," Energies, MDPI, vol. 14(7), pages 1-20, April.
    5. Paweł Jabłoński & Dariusz Kusiak & Tomasz Szczegielniak & Zygmunt Piątek, 2020. "The Proximity Effect in Twin Line with Round Conductors Placed in Conductive Medium," Energies, MDPI, vol. 13(22), pages 1-23, November.
    6. Paweł Jabłoński & Dariusz Kusiak & Tomasz Szczegielniak, 2020. "Analytical-Numerical Approach to the Skin and Proximity Effect in Lines with Round Parallel Wires," Energies, MDPI, vol. 13(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6341-:d:1230777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.