IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3496-d266210.html
   My bibliography  Save this article

Thermal Effects of Ground Faults on MV Joints and Cables

Author

Listed:
  • Tommaso Bragatto

    (Department of Astronautics, Electric and Energy Engineering, “Sapienza” University of Rome, 00184 Rome, Italy)

  • Alberto Cerretti

    (e-Distribuzione S.p.A., via Ombrone, 00198 Rome, Italy)

  • Luigi D’Orazio

    (e-Distribuzione S.p.A., via Ombrone, 00198 Rome, Italy)

  • Fabio Massimo Gatta

    (Department of Astronautics, Electric and Energy Engineering, “Sapienza” University of Rome, 00184 Rome, Italy)

  • Alberto Geri

    (Department of Astronautics, Electric and Energy Engineering, “Sapienza” University of Rome, 00184 Rome, Italy)

  • Marco Maccioni

    (Department of Astronautics, Electric and Energy Engineering, “Sapienza” University of Rome, 00184 Rome, Italy)

Abstract

In recent years, an anomalous increase of faults in underground medium voltage (MV) cable lines has been recorded in Italy, especially during summer; the largest number of faults affected cable joints. The assessment of joint thermal stress, both in normal operation and during faults, is paramount. The study presented in this paper focuses on cable heating effects due to short circuit currents flowing through cable screens during ground faults (e.g., in case of cross country faults, CCFs, whose current values are comparable to line-to-line short circuit), considering the contact resistance (CR) between cable screens and copper stocking due to inaccurate joint manufacturing. A thermal model, already developed and discussed by the authors in previous papers, has been extended and applied in this study in order to assess the CR effects in cable and joint heating during failures. Parametric studies have been carried out on a typical cable-joint system, varying fault current and CR values, as well as considering protection schemes normally adopted by distribution system operators (DSOs) in Italian MV distribution grids. Results show that for CR values larger than few milliohms, fault currents due to CCFs are able to overheat the joint well beyond the maximum tolerable temperature of insulation, thus leading to cable failures when the shortest fault clearing times (i.e., 120 ms) are considered.

Suggested Citation

  • Tommaso Bragatto & Alberto Cerretti & Luigi D’Orazio & Fabio Massimo Gatta & Alberto Geri & Marco Maccioni, 2019. "Thermal Effects of Ground Faults on MV Joints and Cables," Energies, MDPI, vol. 12(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3496-:d:266210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Massimo Gatta & Alberto Geri & Stefano Lauria & Marco Maccioni, 2018. "An Equivalent Circuit for the Evaluation of Cross-Country Fault Currents in Medium Voltage (MV) Distribution Networks," Energies, MDPI, vol. 11(8), pages 1-12, July.
    2. Badache, Messaoud & Eslami-Nejad, Parham & Ouzzane, Mohamed & Aidoun, Zine & Lamarche, Louis, 2016. "A new modeling approach for improved ground temperature profile determination," Renewable Energy, Elsevier, vol. 85(C), pages 436-444.
    3. Fan Yang & Ningxi Zhu & Gang Liu & Hui Ma & Xiaoyu Wei & Chuanliang Hu & Zhenhua Wang & Jiasheng Huang, 2018. "A New Method for Determining the Connection Resistance of the Compression Connector in Cable Joint," Energies, MDPI, vol. 11(7), pages 1-19, June.
    4. Fan Yang & Kai Liu & Peng Cheng & Shaohua Wang & Xiaoyu Wang & Bing Gao & Yalin Fang & Rong Xia & Irfan Ullah, 2016. "The Coupling Fields Characteristics of Cable Joints and Application in the Evaluation of Crimping Process Defects," Energies, MDPI, vol. 9(11), pages 1-19, November.
    5. Taehong Sung & Sang Youl Yoon & Kyung Chun Kim, 2015. "A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle," Energies, MDPI, vol. 8(7), pages 1-12, July.
    6. Jiangjun Ruan & Qinghua Zhan & Liezheng Tang & Ke Tang, 2018. "Real-Time Temperature Estimation of Three-Core Medium-Voltage Cable Joint Based on Support Vector Regression," Energies, MDPI, vol. 11(6), pages 1-18, May.
    7. Li Zhang & Xiyue LuoYang & Yanjie Le & Fan Yang & Chun Gan & Yinxian Zhang, 2018. "A Thermal Probability Density–Based Method to Detect the Internal Defects of Power Cable Joints," Energies, MDPI, vol. 11(7), pages 1-13, June.
    8. Pengyu Wang & Gang Liu & Hui Ma & Yigang Liu & Tao Xu, 2017. "Investigation of the Ampacity of a Prefabricated Straight-Through Joint of High Voltage Cable," Energies, MDPI, vol. 10(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Chen & Yi Yue & Yuejin Tang, 2021. "Research on Temperature Monitoring Method of Cable on 10 kV Railway Power Transmission Lines Based on Distributed Temperature Sensor," Energies, MDPI, vol. 14(12), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiahong He & Kang He & Longfei Cui, 2019. "Charge-Simulation-Based Electric Field Analysis and Electrical Tree Propagation Model with Defects in 10 kV XLPE Cable Joint," Energies, MDPI, vol. 12(23), pages 1-22, November.
    2. Fan Yang & Ningxi Zhu & Gang Liu & Hui Ma & Xiaoyu Wei & Chuanliang Hu & Zhenhua Wang & Jiasheng Huang, 2018. "A New Method for Determining the Connection Resistance of the Compression Connector in Cable Joint," Energies, MDPI, vol. 11(7), pages 1-19, June.
    3. Jiangjun Ruan & Qinghua Zhan & Liezheng Tang & Ke Tang, 2018. "Real-Time Temperature Estimation of Three-Core Medium-Voltage Cable Joint Based on Support Vector Regression," Energies, MDPI, vol. 11(6), pages 1-18, May.
    4. Tomasz Szczegielniak & Dariusz Kusiak & Paweł Jabłoński, 2021. "Thermal Analysis of the Medium Voltage Cable," Energies, MDPI, vol. 14(14), pages 1-17, July.
    5. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
    6. WenWei Zhu & YiFeng Zhao & ZhuoZhan Han & XiangBing Wang & YanFeng Wang & Gang Liu & Yue Xie & NingXi Zhu, 2019. "Thermal Effect of Different Laying Modes on Cross-Linked Polyethylene (XLPE) Insulation and a New Estimation on Cable Ampacity," Energies, MDPI, vol. 12(15), pages 1-22, August.
    7. Aldona Skotnicka-Siepsiak, 2020. "Operation of a Tube GAHE in Northeastern Poland in Spring and Summer—A Comparison of Real-World Data with Mathematically Modeled Data," Energies, MDPI, vol. 13(7), pages 1-15, April.
    8. Xing, Lu & Li, Liheng & Gong, Jiakang & Ren, Chen & Liu, Jiangyan & Chen, Huanxin, 2018. "Daily soil temperatures predictions for various climates in United States using data-driven model," Energy, Elsevier, vol. 160(C), pages 430-440.
    9. Monika Gwadera & Barbara Larwa & Krzysztof Kupiec, 2017. "Undisturbed Ground Temperature—Different Methods of Determination," Sustainability, MDPI, vol. 9(11), pages 1-14, November.
    10. Carlo Olivieri & Francesco de Paulis & Antonio Orlandi & Giorgio Giannuzzi & Roberto Salvati & Roberto Zaottini & Carlo Morandini & Lorenzo Mocarelli, 2019. "Remote Monitoring of Joints Status on In-Service High-Voltage Overhead Lines," Energies, MDPI, vol. 12(6), pages 1-17, March.
    11. Virginia Negri & Alessandro Mingotti & Roberto Tinarelli & Lorenzo Peretto, 2023. "Comparison of Algorithms for the AI-Based Fault Diagnostic of Cable Joints in MV Networks," Energies, MDPI, vol. 16(1), pages 1-20, January.
    12. Luca Barbieri & Andrea Villa & Roberto Malgesini & Daniele Palladini & Christian Laurano, 2021. "An Innovative Sensor for Cable Joint Monitoring and Partial Discharge Localization," Energies, MDPI, vol. 14(14), pages 1-12, July.
    13. Alessandro Mingotti & Federica Costa & Lorenzo Peretto & Roberto Tinarelli & Paolo Mazza, 2021. "Modeling Stray Capacitances of High-Voltage Capacitive Dividers for Conventional Measurement Setups," Energies, MDPI, vol. 14(5), pages 1-15, February.
    14. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.
    15. Lei You & Jian Wang & Gang Liu & Hui Ma & Ming Zheng, 2018. "Thermal Rating of Offshore Wind Farm Cables Installed in Ventilated J-Tubes," Energies, MDPI, vol. 11(3), pages 1-14, March.
    16. Gang Liu & Deming Guo & Pengyu Wang & Honglei Deng & Xiaobin Hong & Wenhu Tang, 2018. "Calculation of Equivalent Resistance for Ground Wires Twined with Armor Rods in Contact Terminals," Energies, MDPI, vol. 11(4), pages 1-24, March.
    17. Krzysztof Lowczowski & Zbigniew Nadolny & Bartosz Olejnik, 2019. "Analysis of Cable Screen Currents for Diagnostics Purposes," Energies, MDPI, vol. 12(7), pages 1-17, April.
    18. Fawu He & Yue Xie & Pengyu Wang & Zhiheng Wu & Shuzhen Bao & Wei Wang & Xiaofeng Xu & Xiaokai Meng & Gang Liu, 2024. "An Improved Analytical Thermal Rating Method for Cable Joints," Energies, MDPI, vol. 17(9), pages 1-15, April.
    19. Heiner Brakelmann & George J. Anders, 2024. "Thermal Analysis of Cable Routes with Joints or Other Discontinuities," Energies, MDPI, vol. 17(16), pages 1-15, August.
    20. Wanli Wang & Guiling Wang & Feng Liu & Chunlei Liu, 2022. "Characterization of Ground Thermal Conditions for Shallow Geothermal Exploitation in the Central North China Plain (NCP) Area," Energies, MDPI, vol. 15(19), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3496-:d:266210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.