IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4152-d591597.html
   My bibliography  Save this article

Provision of Frequency Stability of an Islanded Microgrid Using a Novel Virtual Inertia Control and a Fractional Order Cascade Controller

Author

Listed:
  • Soroush Oshnoei

    (Department of Electrical Engineering, Shahid Abbaspour School of Engineering, Shahid Beheshti University, Tehran 19839-69411, Iran)

  • Mohammadreza Aghamohammadi

    (Department of Electrical Engineering, Shahid Abbaspour School of Engineering, Shahid Beheshti University, Tehran 19839-69411, Iran)

  • Siavash Oshnoei

    (Department of Electrical Engineering, Urmia Branch, Islamic Azad University, Urmia 57169-63896, Iran)

  • Arman Oshnoei

    (Department of Electrical Engineering, Shahid Abbaspour School of Engineering, Shahid Beheshti University, Tehran 19839-69411, Iran
    Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Behnam Mohammadi-Ivatloo

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark
    Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 51666-16471, Iran)

Abstract

Nowadays, the renewable energy sources in microgrids (MGs) have high participation to supply the consumer’s demand. In such MGs, the problems such as the system frequency stability, inertia, and damping reduction are threatened. To overcome this challenge, employing the virtual inertia control (VIC) concept in the MG structure could be considered as a viable solution to improve the system frequency response. Hence, this work proposes a novel modeling for VIC in an islanded MG that provides simultaneous emulation of the primary frequency control, virtual inertia, and damping. To show the efficiency of the proposed technique, a comparison is made between the dynamic performance of the proposed VIC and conventional VIC under different scenarios. The results indicate that the proposed VIC presents superior frequency performance in comparison with conventional VIC. In addition to VIC modeling, a new cascade controller based on three-degrees of freedom and fractional-order controllers (FOCs) is proposed as an MG secondary controller. The effectiveness of the proposed controller is compared to tilt-integral-derivative and FO proportional-integral-derivative controllers. The Squirrel search algorithm is utilized to obtain the optimal coefficients of the controllers. The results demonstrate that the proposed controller improves the MG frequency performance over other controllers. Eventually, the sensitivity analysis is performed to investigate the robustness of the proposed controller in the face of the variations of the parameters.

Suggested Citation

  • Soroush Oshnoei & Mohammadreza Aghamohammadi & Siavash Oshnoei & Arman Oshnoei & Behnam Mohammadi-Ivatloo, 2021. "Provision of Frequency Stability of an Islanded Microgrid Using a Novel Virtual Inertia Control and a Fractional Order Cascade Controller," Energies, MDPI, vol. 14(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4152-:d:591597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basu, M., 2019. "Squirrel search algorithm for multi-region combined heat and power economic dispatch incorporating renewable energy sources," Energy, Elsevier, vol. 182(C), pages 296-305.
    2. Jie Xing & Peng Wu, 2021. "Optimal Planning of Electricity-Natural Gas Coupling System Considering Power to Gas Facilities," Energies, MDPI, vol. 14(12), pages 1-19, June.
    3. Nastasi, Benedetto & Mazzoni, Stefano & Groppi, Daniele & Romagnoli, Alessandro & Astiaso Garcia, Davide, 2021. "Solar power-to-gas application to an island energy system," Renewable Energy, Elsevier, vol. 164(C), pages 1005-1016.
    4. Iván Pazmiño & Sergio Martinez & Danny Ochoa, 2021. "Analysis of Control Strategies Based on Virtual Inertia for the Improvement of Frequency Stability in an Islanded Grid with Wind Generators and Battery Energy Storage Systems," Energies, MDPI, vol. 14(3), pages 1-18, January.
    5. Tefera Mekonnen & Ramchandra Bhandari & Venkata Ramayya, 2021. "Modeling, Analysis and Optimization of Grid-Integrated and Islanded Solar PV Systems for the Ethiopian Residential Sector: Considering an Emerging Utility Tariff Plan for 2021 and Beyond," Energies, MDPI, vol. 14(11), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mokhtar Aly & Emad A. Mohamed & Abdullah M. Noman & Emad M. Ahmed & Fayez F. M. El-Sousy & Masayuki Watanabe, 2023. "Optimized Non-Integer Load Frequency Control Scheme for Interconnected Microgrids in Remote Areas with High Renewable Energy and Electric Vehicle Penetrations," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    2. Asmaa Faragalla & Omar Abdel-Rahim & Mohamed Orabi & Esam H. Abdelhameed, 2022. "Enhanced Virtual Inertia Control for Microgrids with High-Penetration Renewables Based on Whale Optimization," Energies, MDPI, vol. 15(23), pages 1-18, December.
    3. Shreya Vishnoi & Srete Nikolovski & More Raju & Mukesh Kumar Kirar & Ankur Singh Rana & Pawan Kumar, 2023. "Frequency Stabilization in an Interconnected Micro-Grid Using Smell Agent Optimization Algorithm-Tuned Classical Controllers Considering Electric Vehicles and Wind Turbines," Energies, MDPI, vol. 16(6), pages 1-25, March.
    4. Oshnoei, Soroush & Aghamohammadi, Mohammad Reza & Oshnoei, Siavash & Sahoo, Subham & Fathollahi, Arman & Khooban, Mohammad Hasan, 2023. "A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control," Applied Energy, Elsevier, vol. 343(C).
    5. Hoda Sorouri & Arman Oshnoei & Mateja Novak & Frede Blaabjerg & Amjad Anvari-Moghaddam, 2022. "Learning-Based Model Predictive Control of DC-DC Buck Converters in DC Microgrids: A Multi-Agent Deep Reinforcement Learning Approach," Energies, MDPI, vol. 15(15), pages 1-21, July.
    6. Asmaa Fawzy & Youssef Mobarak & Dina S. Osheba & Mahmoud G. Hemeida & Tomonobu Senjyu & Mohamed Roshdy, 2022. "An Online Archimedes Optimization Algorithm Identifier-Controlled Adaptive Modified Virtual Inertia Control for Microgrids," Energies, MDPI, vol. 15(23), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Xing & Peng Wu, 2021. "Optimal Planning of Electricity-Natural Gas Coupling System Considering Power to Gas Facilities," Energies, MDPI, vol. 14(12), pages 1-19, June.
    2. Sofia Agostinelli & Fabrizio Cumo & Meysam Majidi Nezhad & Giuseppe Orsini & Giuseppe Piras, 2022. "Renewable Energy System Controlled by Open-Source Tools and Digital Twin Model: Zero Energy Port Area in Italy," Energies, MDPI, vol. 15(5), pages 1-24, March.
    3. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    4. Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).
    5. Saheed Lekan Gbadamosi & Nnamdi I. Nwulu, 2020. "Optimal Power Dispatch and Reliability Analysis of Hybrid CHP-PV-Wind Systems in Farming Applications," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    6. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    7. Chankook Park & Minkyu Kim, 2021. "A Study on the Characteristics of Academic Topics Related to Renewable Energy Using the Structural Topic Modeling and the Weak Signal Concept," Energies, MDPI, vol. 14(5), pages 1-24, March.
    8. Hossein Lotfi, 2022. "A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    9. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Elattar, Ehab & Ginidi, Ahmed R., 2022. "An Amalgamated Heap and Jellyfish Optimizer for economic dispatch in Combined heat and power systems including N-1 Unit outages," Energy, Elsevier, vol. 246(C).
    10. Herc, Luka & Pfeifer, Antun & Duić, Neven, 2022. "Optimization of the possible pathways for gradual energy system decarbonization," Renewable Energy, Elsevier, vol. 193(C), pages 617-633.
    11. Lei Chen & Bingjie Zhao & Yunpeng Ma, 2023. "FSSSA: A Fuzzy Squirrel Search Algorithm Based on Wide-Area Search for Numerical and Engineering Optimization Problems," Mathematics, MDPI, vol. 11(17), pages 1-42, August.
    12. Son, Yeong Geon & Choi, Sungyun & Aquah, Moses Amoasi & Kim, Sung Yul, 2023. "Systematic planning of power-to-gas for improving photovoltaic acceptance rate: Application of the potential RES penetration index," Applied Energy, Elsevier, vol. 349(C).
    13. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Tefera Mekonnen & Ramchandra Bhandari & Venkata Ramayya, 2021. "Modeling, Analysis and Optimization of Grid-Integrated and Islanded Solar PV Systems for the Ethiopian Residential Sector: Considering an Emerging Utility Tariff Plan for 2021 and Beyond," Energies, MDPI, vol. 14(11), pages 1-24, June.
    15. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand," Applied Energy, Elsevier, vol. 285(C).
    16. Naoya Nagano & Rémi Delage & Toshihiko Nakata, 2021. "Optimal Design and Analysis of Sector-Coupled Energy System in Northeast Japan," Energies, MDPI, vol. 14(10), pages 1-26, May.
    17. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun & Wu, Jiahui & Fan, Xiaochao & Xu, Qidan, 2020. "Dynamic environmental economic dispatch of hybrid renewable energy systems based on tradable green certificates," Energy, Elsevier, vol. 193(C).
    18. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong & Ma, Zeyang, 2023. "A novel two-layer nested optimization method for a zero-carbon island integrated energy system, incorporating tidal current power generation," Renewable Energy, Elsevier, vol. 218(C).
    19. Shabnam Homaei & Mohamed Hamdy, 2021. "Quantification of Energy Flexibility and Survivability of All-Electric Buildings with Cost-Effective Battery Size: Methodology and Indexes," Energies, MDPI, vol. 14(10), pages 1-32, May.
    20. Ali Sulaiman Alsagri & Abdulrahman A. Alrobaian, 2022. "Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview," Energies, MDPI, vol. 15(16), pages 1-34, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4152-:d:591597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.