IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9254-d995374.html
   My bibliography  Save this article

Enhanced Virtual Inertia Control for Microgrids with High-Penetration Renewables Based on Whale Optimization

Author

Listed:
  • Asmaa Faragalla

    (Faculty of Energy Engineering, Aswan University, Aswan 81542, Egypt)

  • Omar Abdel-Rahim

    (APEARC, Aswan University, Aswan 81542, Egypt
    Electrical Engineering Department, School of Electronics, Communications and Computer Engineering, Egypt-Japan University of Science and Technology (E-JUST), New Borg ElArab, Alexandria 21934, Egypt)

  • Mohamed Orabi

    (APEARC, Aswan University, Aswan 81542, Egypt)

  • Esam H. Abdelhameed

    (Faculty of Energy Engineering, Aswan University, Aswan 81542, Egypt)

Abstract

High penetration of renewable energy sources into isolated microgrids (µGs) is considered a critical challenge, as µGs’ operation at low inertia results in frequency stability problems. To solve this challenge, virtual inertia control based on an energy storage system is applied to enhance the inertia and damping properties of the µG. On the other hand, utilization of a phase-locked loop (PLL) is indispensable for measuring system frequency; however, its dynamics, such as measurement delay and noise generation, cause extra deterioration of frequency stability. In this paper, to improve µG frequency stability and minimize the impact of PLL dynamics, a new optimal frequency control technique is proposed. A whale optimization algorithm is used to enhance the virtual inertia control loop by optimizing the parameters of the virtual inertia controller with consideration of PLL dynamics and the uncertainties of system inertia. The proposed controller has been validated through comparisons with an optimized virtual inertia PI controller which is tuned utilizing MATLAB internal model control methodology and with H ∞ -based virtual inertia control. The results show the effectiveness of the proposed controller against different operating conditions and system disturbances and uncertainties.

Suggested Citation

  • Asmaa Faragalla & Omar Abdel-Rahim & Mohamed Orabi & Esam H. Abdelhameed, 2022. "Enhanced Virtual Inertia Control for Microgrids with High-Penetration Renewables Based on Whale Optimization," Energies, MDPI, vol. 15(23), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9254-:d:995374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thongchart Kerdphol & Masayuki Watanabe & Yasunori Mitani & Veena Phunpeng, 2019. "Applying Virtual Inertia Control Topology to SMES System for Frequency Stability Improvement of Low-Inertia Microgrids Driven by High Renewables," Energies, MDPI, vol. 12(20), pages 1-16, October.
    2. Soroush Oshnoei & Mohammadreza Aghamohammadi & Siavash Oshnoei & Arman Oshnoei & Behnam Mohammadi-Ivatloo, 2021. "Provision of Frequency Stability of an Islanded Microgrid Using a Novel Virtual Inertia Control and a Fractional Order Cascade Controller," Energies, MDPI, vol. 14(14), pages 1-24, July.
    3. Jesus Castro Martinez & Santiago Arnaltes & Jaime Alonso-Martinez & Jose Luis Rodriguez Amenedo, 2021. "Contribution of Wind Farms to the Stability of Power Systems with High Penetration of Renewables," Energies, MDPI, vol. 14(8), pages 1-21, April.
    4. Thongchart Kerdphol & Fathin Saifur Rahman & Yasunori Mitani, 2018. "Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 11(4), pages 1-16, April.
    5. Dai Orihara & Hiroshi Kikusato & Jun Hashimoto & Kenji Otani & Takahiro Takamatsu & Takashi Oozeki & Hisao Taoka & Takahiro Matsuura & Satoshi Miyazaki & Hiromu Hamada & Kenjiro Mori, 2021. "Contribution of Voltage Support Function to Virtual Inertia Control Performance of Inverter-Based Resource in Frequency Stability," Energies, MDPI, vol. 14(14), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asmaa Fawzy & Youssef Mobarak & Dina S. Osheba & Mahmoud G. Hemeida & Tomonobu Senjyu & Mohamed Roshdy, 2022. "An Online Archimedes Optimization Algorithm Identifier-Controlled Adaptive Modified Virtual Inertia Control for Microgrids," Energies, MDPI, vol. 15(23), pages 1-27, November.
    2. Amr Saleh & Hany M. Hasanien & Rania A. Turky & Balgynbek Turdybek & Mohammed Alharbi & Francisco Jurado & Walid A. Omran, 2023. "Optimal Model Predictive Control for Virtual Inertia Control of Autonomous Microgrids," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    3. Mohamed Khamies & Salah Kamel & Mohamed H. Hassan & Mohamed F. Elnaggar, 2022. "A Developed Frequency Control Strategy for Hybrid Two-Area Power System with Renewable Energy Sources Based on an Improved Social Network Search Algorithm," Mathematics, MDPI, vol. 10(9), pages 1-31, May.
    4. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Thongchart Kerdphol & Masayuki Watanabe & Yasunori Mitani & Veena Phunpeng, 2019. "Applying Virtual Inertia Control Topology to SMES System for Frequency Stability Improvement of Low-Inertia Microgrids Driven by High Renewables," Energies, MDPI, vol. 12(20), pages 1-16, October.
    6. Shreya Vishnoi & Srete Nikolovski & More Raju & Mukesh Kumar Kirar & Ankur Singh Rana & Pawan Kumar, 2023. "Frequency Stabilization in an Interconnected Micro-Grid Using Smell Agent Optimization Algorithm-Tuned Classical Controllers Considering Electric Vehicles and Wind Turbines," Energies, MDPI, vol. 16(6), pages 1-25, March.
    7. Reza Saeed Kandezy & John Jiang & Di Wu, 2024. "On SINDy Approach to Measure-Based Detection of Nonlinear Energy Flows in Power Grids with High Penetration Inverter-Based Renewables," Energies, MDPI, vol. 17(3), pages 1-18, February.
    8. Ashish Shrestha & Bishal Ghimire & Francisco Gonzalez-Longatt, 2021. "A Bayesian Model to Forecast the Time Series Kinetic Energy Data for a Power System," Energies, MDPI, vol. 14(11), pages 1-15, June.
    9. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    10. Md Shafiul Alam & Fahad Saleh Al-Ismail & Mohammad Ali Abido, 2021. "PV/Wind-Integrated Low-Inertia System Frequency Control: PSO-Optimized Fractional-Order PI-Based SMES Approach," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    11. Tingting Cai & Sutong Liu & Gangui Yan & Hongbo Liu, 2019. "Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints," Energies, MDPI, vol. 12(4), pages 1-20, February.
    12. Oshnoei, Soroush & Aghamohammadi, Mohammad Reza & Oshnoei, Siavash & Sahoo, Subham & Fathollahi, Arman & Khooban, Mohammad Hasan, 2023. "A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control," Applied Energy, Elsevier, vol. 343(C).
    13. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    14. Dillip Kumar Mishra & Daria Złotecka & Li Li, 2022. "Significance of SMES Devices for Power System Frequency Regulation Scheme considering Distributed Energy Resources in a Deregulated Environment," Energies, MDPI, vol. 15(5), pages 1-32, February.
    15. Mokhtar Aly & Emad A. Mohamed & Abdullah M. Noman & Emad M. Ahmed & Fayez F. M. El-Sousy & Masayuki Watanabe, 2023. "Optimized Non-Integer Load Frequency Control Scheme for Interconnected Microgrids in Remote Areas with High Renewable Energy and Electric Vehicle Penetrations," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    16. Abdel-Raheem Youssef & Mohamad Mallah & Abdelfatah Ali & Mostafa F. Shaaban & Essam E. M. Mohamed, 2023. "Enhancement of Microgrid Frequency Stability Based on the Combined Power-to-Hydrogen-to-Power Technology under High Penetration Renewable Units," Energies, MDPI, vol. 16(8), pages 1-18, April.
    17. Amr Saleh & Walid A. Omran & Hany M. Hasanien & Marcos Tostado-Véliz & Abdulaziz Alkuhayli & Francisco Jurado, 2022. "Manta Ray Foraging Optimization for the Virtual Inertia Control of Islanded Microgrids Including Renewable Energy Sources," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    18. Gustavo Adolfo Gómez-Ramírez & Carlos Meza & Gonzalo Mora-Jiménez & José Rodrigo Rojas Morales & Luis García-Santander, 2023. "The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition," Energies, MDPI, vol. 16(11), pages 1-20, May.
    19. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    20. Zihao Cheng & Songlin Hu & Jieting Ma, 2020. "Resilient Event-Triggered Control for LFC-VSG Scheme of Uncertain Discrete-Time Power System under DoS Attacks," Energies, MDPI, vol. 13(7), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9254-:d:995374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.