IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4135-d591076.html
   My bibliography  Save this article

Environmentally Constrained Optimal Dispatch Method for Combined Cooling, Heating, and Power Systems Using Two-Stage Optimization

Author

Listed:
  • Haesung Jo

    (School of Electrical Engineering, Inha University, Incheon 22212, Korea)

  • Jaemin Park

    (School of Electrical Engineering, Inha University, Incheon 22212, Korea)

  • Insu Kim

    (School of Electrical Engineering, Inha University, Incheon 22212, Korea)

Abstract

The reliance on coal-fired power generation has gradually reduced with the growing interest in the environment and safety, and the environmental effects of power generation are now being considered. However, it can be difficult to provide stable power to end-users while minimizing environmental pollution by replacing coal-fired systems with combined cooling, heat, and power (CCHP) systems that use natural gas, because CCHP systems have various power output vulnerabilities. Therefore, purchasing power from external electric grids is essential in areas where CCHP systems are built; hence, optimal CCHP controls should also consider energy purchased from external grids. This study proposes a two-stage algorithm to optimally control CCHP systems. In Stage One, the optimal energy mix using the Lagrange multiplier method for state-wide grids from which CCHP systems purchase deficient electricity was calculated. In Stage Two, the purchased volumes from these grids were used as inputs to the proposed optimization algorithm to optimize CCHP systems suitable for metropolitan areas. We used case studies to identify the accurate energy efficiency, costs, and minimal emissions. We chose the Atlanta area to analyze the CCHP system’s impact on energy efficiency, cost variation, and emission savings. Then, we calculated an energy mix suitable for the region for each simulation period. The case study results confirm that deploying an optimized CCHP system can reduce purchased volumes from the grid while reducing total emissions. We also analyzed the impact of the CCHP system on emissions and cost savings.

Suggested Citation

  • Haesung Jo & Jaemin Park & Insu Kim, 2021. "Environmentally Constrained Optimal Dispatch Method for Combined Cooling, Heating, and Power Systems Using Two-Stage Optimization," Energies, MDPI, vol. 14(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4135-:d:591076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jiangjiang & Liu, Yi & Ren, Fukang & Lu, Shuaikang, 2020. "Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility," Energy, Elsevier, vol. 197(C).
    2. Bernal-Agustín, José L. & Dufo-López, Rodolfo & Rivas-Ascaso, David M., 2006. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 31(14), pages 2227-2244.
    3. Schennach, Susanne M., 2000. "The Economics of Pollution Permit Banking in the Context of Title IV of the 1990 Clean Air Act Amendments," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 189-210, November.
    4. Atkins, Martin J. & Morrison, Andrew S. & Walmsley, Michael R.W., 2010. "Carbon Emissions Pinch Analysis (CEPA) for emissions reduction in the New Zealand electricity sector," Applied Energy, Elsevier, vol. 87(3), pages 982-987, March.
    5. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    6. Zhang, Ming & Mu, Hailin & Ning, Yadong & Song, Yongchen, 2009. "Decomposition of energy-related CO2 emission over 1991-2006 in China," Ecological Economics, Elsevier, vol. 68(7), pages 2122-2128, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaemin Park & Haesung Jo & Insu Kim, 2021. "The Selection of the Most Cost-Efficient Distributed Generation Type for a Combined Cooling Heat and Power System Used for Metropolitan Residential Customers," Energies, MDPI, vol. 14(18), pages 1-25, September.
    2. Insu Kim & Beopsoo Kim & Denis Sidorov, 2022. "Machine Learning for Energy Systems Optimization," Energies, MDPI, vol. 15(11), pages 1-8, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    2. Estelle Cantillon & Aurélie Slechten, 2018. "Information Aggregation in Emissions Markets with Abatement," Annals of Economics and Statistics, GENES, issue 132, pages 53-79.
    3. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    4. Grüll, Georg & Taschini, Luca, 2011. "Cap-and-trade properties under different hybrid scheme designs," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 107-118, January.
    5. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    6. Sabbaghi, Omid & Sabbaghi, Navid, 2011. "Carbon Financial Instruments, thin trading, and volatility: Evidence from the Chicago Climate Exchange," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(4), pages 399-407.
    7. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    8. Nian Liu & Cheng Wang & Minyang Cheng & Jie Wang, 2016. "A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids," Energies, MDPI, vol. 9(12), pages 1-18, December.
    9. Yu, Shiwei & Wei, Yi-Ming & Fan, Jingli & Zhang, Xian & Wang, Ke, 2012. "Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization," Applied Energy, Elsevier, vol. 92(C), pages 552-562.
    10. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    11. Fell, Harrison, 2016. "Comparing policies to confront permit over-allocation," Journal of Environmental Economics and Management, Elsevier, vol. 80(C), pages 53-68.
    12. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    13. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    14. Hui Fang & Chunyu Jiang & Tufail Hussain & Xiaoye Zhang & Qixin Huo, 2022. "Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    15. Considine, Timothy J. & Larson, Donald F., 2006. "The environment as a factor of production," Journal of Environmental Economics and Management, Elsevier, vol. 52(3), pages 645-662, November.
    16. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
    17. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    18. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    19. Jae‐Do Song, 2023. "Excessive banking preference in emissions trading," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(1), pages 448-458, January.
    20. Richard Newell & William Pizer & Jiangfeng Zhang, 2005. "Managing Permit Markets to Stabilize Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(2), pages 133-157, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4135-:d:591076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.