IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3983-d587765.html
   My bibliography  Save this article

Optimal Coupler Topology for Dynamic Wireless Power Transfer for Electric Vehicle

Author

Listed:
  • Karim Kadem

    (Laboratoire de Génie Electrique et Electronique de Paris, Université Paris-Saclay, CentraleSupélec, CNRS, 91192 Gif-sur-Yvette, France
    Laboratoire de Génie Electrique et Electronique de Paris, Sorbonne Université, CNRS, 75252 Paris, France
    Institut VEDECOM, 23 bis Allée des Marronniers, 78000 Versailles, France)

  • Mohamed Bensetti

    (Laboratoire de Génie Electrique et Electronique de Paris, Université Paris-Saclay, CentraleSupélec, CNRS, 91192 Gif-sur-Yvette, France
    Laboratoire de Génie Electrique et Electronique de Paris, Sorbonne Université, CNRS, 75252 Paris, France)

  • Yann Le Bihan

    (Laboratoire de Génie Electrique et Electronique de Paris, Université Paris-Saclay, CentraleSupélec, CNRS, 91192 Gif-sur-Yvette, France
    Laboratoire de Génie Electrique et Electronique de Paris, Sorbonne Université, CNRS, 75252 Paris, France)

  • Eric Labouré

    (Laboratoire de Génie Electrique et Electronique de Paris, Université Paris-Saclay, CentraleSupélec, CNRS, 91192 Gif-sur-Yvette, France
    Laboratoire de Génie Electrique et Electronique de Paris, Sorbonne Université, CNRS, 75252 Paris, France)

  • Mustapha Debbou

    (Institut VEDECOM, 23 bis Allée des Marronniers, 78000 Versailles, France)

Abstract

Recently, the number of electric vehicles (EVs) is increasing due to the decline of oil resources and the rising of greenhouse gas emissions. However, EVs have not received full acceptance by consumers due to the limitations of the stored energy and charging problems. The dynamic or in-motion charging solution has become a suitable choice to solve the battery-related issues. Many researchers and vehicle manufacturers are working to develop an efficient charging system for EVs. In order to improve the efficiency of the dynamic wireless power transfer (DWPT), the electromagnetic coupling coefficient between the two parts of the coupler must be maximized. This paper was dedicated to find the optimal topology of a magnetic coupler with the best coupling factor while taking in consideration the displacement and the misalignment of the EV. The article is introduced by developing a methodology for characterizing the electrical parameters of couplers, followed by a comparative study of different forms of coils suitable for dynamic charging of electric vehicles. The particularity of the proposed study concerned the overall dimensions, or the areas occupied by the windings of the coils remaining the same for all the chosen shapes and corresponding to the surface that is actually available under the EV. Simulation and experimental tests were carried out to validate the proposed study.

Suggested Citation

  • Karim Kadem & Mohamed Bensetti & Yann Le Bihan & Eric Labouré & Mustapha Debbou, 2021. "Optimal Coupler Topology for Dynamic Wireless Power Transfer for Electric Vehicle," Energies, MDPI, vol. 14(13), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3983-:d:587765
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalwar, Kafeel Ahmed & Aamir, Muhammad & Mekhilef, Saad, 2015. "Inductively coupled power transfer (ICPT) for electric vehicle charging – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 462-475.
    2. Fabio Corti & Alberto Reatti & Andrea Nepote & Luca Pugi & Marco Pierini & Libero Paolucci & Francesco Grasso & Emanuele Grasso & Matthias Nienhause, 2020. "A Secondary-Side Controlled Electric Vehicle Wireless Charger," Energies, MDPI, vol. 13(24), pages 1-19, December.
    3. Vincenzo Cirimele & Fabio Freschi & Paolo Guglielmi, 2018. "Scaling Rules at Constant Frequency for Resonant Inductive Power Transfer Systems for Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    4. Yang Yang & Jinlong Cui & Xin Cui, 2020. "Design and Analysis of Magnetic Coils for Optimizing the Coupling Coefficient in an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Wang & Huaibao Wang & Hao Ding & Ligen Xun & Sifan Wu, 2021. "A New SVPWM Strategy for Three-Phase Isolated Converter with Current Ripple Reduction," Energies, MDPI, vol. 14(16), pages 1-15, August.
    2. Nadir Benalia & Kouider Laroussi & Idriss Benlaloui & Abdellah Kouzou & Abed-Djebar Bensalah & Ralph Kennel & Mohamed Abdelrahem, 2023. "Optimized Power Pads for Charging Electric Vehicles Based on a New Rectangular Spiral Shape Design," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    3. Mohamed Bensetti & Karim Kadem & Yao Pei & Yann Le Bihan & Eric Labouré & Lionel Pichon, 2023. "Parametric Optimization of Ferrite Structure Used for Dynamic Wireless Power Transfer for 3 kW Electric Vehicle," Energies, MDPI, vol. 16(14), pages 1-14, July.
    4. Anthony Bassesuka Sandoka Nzao, 2024. "Study of the Simulation and Application of the PEEC Method for Modeling the Prediction of Emissions Radiated by the Onboard Electronic Wiring System," Computer and Information Science, Canadian Center of Science and Education, vol. 17(2), pages 1-7, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Alicia Triviño-Cabrera & Zhengyu Lin & José A. Aguado, 2018. "Impact of Coil Misalignment in Data Transmission over the Inductive Link of an EV Wireless Charger," Energies, MDPI, vol. 11(3), pages 1-11, March.
    3. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. García-Vázquez, Carlos A. & Llorens-Iborra, Francisco & Fernández-Ramírez, Luis M. & Sánchez-Sainz, Higinio & Jurado, Francisco, 2017. "Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches," Energy, Elsevier, vol. 137(C), pages 42-57.
    5. Li, Lantian & Wang, Zhenpo & Gao, Feng & Wang, Shuo & Deng, Junjun, 2020. "A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger," Applied Energy, Elsevier, vol. 260(C).
    6. Yao Pei & Yann Le Bihan & Mohamed Bensetti & Lionel Pichon, 2021. "Comparison of Coupling Coils for Static Inductive Power-Transfer Systems Taking into Account Sources of Uncertainty," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    7. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    8. Alejandro Rojano-Padrón & Marc Olivier Metais & Francisco J. Ramos-Real & Yannick Perez, 2023. "Tenerife’s Infrastructure Plan for Electromobility: A MATSim Evaluation," Energies, MDPI, vol. 16(3), pages 1-24, January.
    9. Jianyang Zhai & Xudong Zhang & Shiqi Zhao & Yuan Zou, 2023. "Modeling and Experiments of a Wireless Power Transfer System Considering Scenarios from In-Wheel-Motor Applications," Energies, MDPI, vol. 16(2), pages 1-20, January.
    10. Li, Feng & Li, Yanjie & Zhou, Siqi & Chen, Yifang & Sun, Xuan & Deng, Yutong, 2022. "Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation," Applied Energy, Elsevier, vol. 323(C).
    11. Babatunde Olukotun & Julius Partridge & Richard Bucknall, 2019. "Finite Element Modeling and Analysis of High Power, Low-loss Flux-Pipe Resonant Coils for Static Bidirectional Wireless Power Transfer," Energies, MDPI, vol. 12(18), pages 1-21, September.
    12. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    13. Martina Radicioni & Valentina Lucaferri & Francesco De Lia & Antonino Laudani & Roberto Lo Presti & Gabriele Maria Lozito & Francesco Riganti Fulginei & Riccardo Schioppo & Mario Tucci, 2021. "Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center," Energies, MDPI, vol. 14(3), pages 1-22, January.
    14. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Machura, Philip & Li, Quan, 2019. "A critical review on wireless charging for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 209-234.
    16. Emrullah Aydin & Mehmet Timur Aydemir & Ahmet Aksoz & Mohamed El Baghdadi & Omar Hegazy, 2022. "Inductive Power Transfer for Electric Vehicle Charging Applications: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-24, July.
    17. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    18. Lantao Huang & Jiahao Zou & Yihan Zhou & Yan Hong & Jing Zhang & Zinan Ding, 2019. "Effect of Vertical Metal Plate on Transfer Efficiency of the Wireless Power Transfer System," Energies, MDPI, vol. 12(19), pages 1-15, October.
    19. Jacopo Colussi & Roberto Re & Paolo Guglielmi, 2022. "Modelling and Design of a Coils Structure for 100 kW Three-Phase Inductive Power Transfer System," Energies, MDPI, vol. 15(14), pages 1-18, July.
    20. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3983-:d:587765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.