IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3827-d582136.html
   My bibliography  Save this article

Pandemic of Childhood Myopia. Could New Indoor LED Lighting Be Part of the Solution?

Author

Listed:
  • David Baeza Moyano

    (Department of Chemistry and Biochemistry, Campus Montepríncipe, Universidad San Pablo CEU, 28668 Alcorcón, Madrid, Spain)

  • Roberto Alonso González-Lezcano

    (Arquitecture and Design Depertment, Escuela Politécnica Superior, Campus Montpríncipe, Universidad San Pablo CEU, 28668 Alcorcón, Madrid, Spain)

Abstract

The existence of a growing myopia pandemic is an unquestionable fact for health authorities around the world. Different possible causes have been put forward over the years, such as a possible genetic origin, the current excess of children’s close-up work compared to previous stages in history, insufficient natural light, or a multifactorial cause. Scientists are looking for different possible solutions to alleviate it, such as a reduction of time or a greater distance for children’s work, the use of drugs, optometric correction methods, surgical procedures, and spending more time outdoors. There is a growing number of articles suggesting insufficient natural light as a possible cause of the increasing levels of childhood myopia around the globe. Technological progress in the world of lighting is making it possible to have more monochromatic LED emission peaks, and because of this, it is possible to create spectral distributions of visible light that increasingly resemble natural light in the visible range. The possibility of creating indoor luminaires that emit throughout the visible spectrum from purple to infrared can now be a reality that could offer a new avenue of research to fight this pandemic.

Suggested Citation

  • David Baeza Moyano & Roberto Alonso González-Lezcano, 2021. "Pandemic of Childhood Myopia. Could New Indoor LED Lighting Be Part of the Solution?," Energies, MDPI, vol. 14(13), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3827-:d:582136
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Nocera & Alessandro Lo Faro & Vincenzo Costanzo & Chiara Raciti, 2018. "Daylight Performance of Classrooms in a Mediterranean School Heritage Building," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    2. Vicente López-Chao & Antonio Amado Lorenzo & Jose Luis Saorín & Jorge De La Torre-Cantero & Dámari Melián-Díaz, 2020. "Classroom Indoor Environment Assessment through Architectural Analysis for the Design of Efficient Schools," Sustainability, MDPI, vol. 12(5), pages 1-12, March.
    3. Karolina M. Zielinska-Dabkowska, 2018. "Make lighting healthier," Nature, Nature, vol. 553(7688), pages 274-276, January.
    4. Hsiu-Mei Huang & Dolly Shuo-Teh Chang & Pei-Chang Wu, 2015. "The Association between Near Work Activities and Myopia in Children—A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-15, October.
    5. Karolina M. Zielinska-Dabkowska & Kyra Xavia, 2019. "Protect our right to light," Nature, Nature, vol. 568(7753), pages 451-453, April.
    6. María Beatriz Piderit Moreno & Constanza Yañez Labarca, 2015. "Methodology for Assessing Daylighting Design Strategies in Classroom with a Climate-Based Method," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huihui Zhou & Xiaoxia Bai, 2023. "A Review of the Role of the School Spatial Environment in Promoting the Visual Health of Minors," IJERPH, MDPI, vol. 20(2), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karolina M. Zielińska-Dabkowska & Kyra Xavia & Katarzyna Bobkowska, 2020. "Assessment of Citizens’ Actions against Light Pollution with Guidelines for Future Initiatives," Sustainability, MDPI, vol. 12(12), pages 1-32, June.
    2. Katarzyna Bobkowska & Pawel Burdziakowski & Jakub Szulwic & Karolina M. Zielinska-Dabkowska, 2021. "Seven Different Lighting Conditions in Photogrammetric Studies of a 3D Urban Mock-Up," Energies, MDPI, vol. 14(23), pages 1-27, November.
    3. Jitka Mohelníková & Miloslav Novotný & Pavla Mocová, 2020. "Evaluation of School Building Energy Performance and Classroom Indoor Environment," Energies, MDPI, vol. 13(10), pages 1-17, May.
    4. Michaela Detsi & Aris Manolitsis & Ioannis Atsonios & Ioannis Mandilaras & Maria Founti, 2020. "Energy Savings in an Office Building with High WWR Using Glazing Systems Combining Thermochromic and Electrochromic Layers," Energies, MDPI, vol. 13(11), pages 1-18, June.
    5. Karim Mohamed Ragab & Mehmet Fatih Orhan & Kenan Saka & Yousef Zurigat, 2022. "A Study and Assessment of the Status of Energy Efficiency and Conservation at School Buildings," Sustainability, MDPI, vol. 14(17), pages 1-31, August.
    6. Karolina M. Zielinska-Dabkowska & Kyra Xavia, 2021. "Looking Up to the Stars. A Call for Action to Save New Zealand’s Dark Skies for Future Generations to Come," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    7. Sara Eriksson & Lovisa Waldenström & Max Tillberg & Magnus Österbring & Angela Sasic Kalagasidis, 2019. "Numerical Simulations and Empirical Data for the Evaluation of Daylight Factors in Existing Buildings in Sweden," Energies, MDPI, vol. 12(11), pages 1-24, June.
    8. Karolina M. Zielinska-Dabkowska & Katarzyna Szlachetko & Katarzyna Bobkowska, 2021. "An Impact Analysis of Artificial Light at Night (ALAN) on Bats. A Case Study of the Historic Monument and Natura 2000 Wisłoujście Fortress in Gdansk, Poland," IJERPH, MDPI, vol. 18(21), pages 1-48, October.
    9. Nona Schulte-Römer & Josiane Meier & Etta Dannemann & Max Söding, 2019. "Lighting Professionals versus Light Pollution Experts? Investigating Views on an Emerging Environmental Concern," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    10. Przemyslaw Tabaka & Justyna Wtorkiewicz, 2022. "Analysis of the Spectral Sensitivity of Luxmeters and Light Sensors of Smartphones in Terms of Their Influence on the Results of Illuminance Measurements—Example Cases," Energies, MDPI, vol. 15(16), pages 1-21, August.
    11. Karolina M. Zielinska-Dabkowska & Kyra Xavia, 2019. "Global Approaches to Reduce Light Pollution from Media Architecture and Non-Static, Self-Luminous LED Displays for Mixed-Use Urban Developments," Sustainability, MDPI, vol. 11(12), pages 1-33, June.
    12. Karolina M. Zielinska-Dabkowska & Julia Hartmann & Carla Sigillo, 2019. "LED Light Sources and Their Complex Set-Up for Visually and Biologically Effective Illumination for Ornamental Indoor Plants," Sustainability, MDPI, vol. 11(9), pages 1-32, May.
    13. Karolina M. Zielinska-Dabkowska, 2022. "Healthier and Environmentally Responsible Sustainable Cities and Communities. A New Design Framework and Planning Approach for Urban Illumination," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    14. Vicente López-Chao & Vicente López-Pena, 2021. "Purpose Adequacy as a Basis for Sustainable Building Design: A Post-Occupancy Evaluation of Higher Education Classrooms," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    15. In-Tae Kim & Yu-Sin Kim & Hyeonggon Nam & Taeyon Hwang, 2018. "Advanced Dimming Control Algorithm for Sustainable Buildings by Daylight Responsive Dimming System," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    16. Jaewook Lee & Mohamed Boubekri & Feng Liang, 2019. "Impact of Building Design Parameters on Daylighting Metrics Using an Analysis, Prediction, and Optimization Approach Based on Statistical Learning Technique," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    17. Michele La Noce & Alessandro Lo Faro & Gaetano Sciuto, 2021. "Clay-Based Products Sustainable Development: Some Applications," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    18. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2016. "Feasibility Study on Parametric Optimization of Daylighting in Building Shading Design," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    19. Giada Giuffrida & Maurizio Detommaso & Francesco Nocera & Rosa Caponetto, 2021. "Design Optimisation Strategies for Solid Rammed Earth Walls in Mediterranean Climates," Energies, MDPI, vol. 14(2), pages 1-23, January.
    20. Joanna Badach & Małgorzata Dymnicka & Andrzej Baranowski, 2020. "Urban Vegetation in Air Quality Management: A Review and Policy Framework," Sustainability, MDPI, vol. 12(3), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3827-:d:582136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.