IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2200-d238508.html
   My bibliography  Save this article

Numerical Simulations and Empirical Data for the Evaluation of Daylight Factors in Existing Buildings in Sweden

Author

Listed:
  • Sara Eriksson

    (Bengt Dahlgren AB, Krokslätts Fabriker 52, 431 37 Gothenburg, Sweden)

  • Lovisa Waldenström

    (Bengt Dahlgren AB, Krokslätts Fabriker 52, 431 37 Gothenburg, Sweden)

  • Max Tillberg

    (Bengt Dahlgren AB, Krokslätts Fabriker 52, 431 37 Gothenburg, Sweden)

  • Magnus Österbring

    (NCC Sweden, Gullbergs Strandgata 2, 411 04 Gothenburg, Sweden)

  • Angela Sasic Kalagasidis

    (Chalmers University of Technology, Department of Architecture and Civil Engineering, Sven Hultins gata 6, SE-41296 Gothenburg, Sweden)

Abstract

Point Daylight Factor (DF P ) has been used for daylighting design in Sweden for more than 40 years. Progressive densification of urban environments, in combination with stricter regulations on energy performance and indoor environmental quality of buildings, creates complex daylight design challenges that cannot be adequately solved with DF P . To support a development of the current and future daylight indicators in the Swedish context, the authors have developed a comprehensive methodology for the evaluation of daylight levels in existing buildings. The methodology comprises sample buildings of various use and their digital replicas in 3D, detailed numerical simulations and correlations of diverse DF metrics in existing buildings, a field investigation on residents’ satisfaction with available daylight levels in their homes, and a comparison between the numerical and experimental data. The study was deliberately limited to the evaluation of DF metrics for their intuitive understanding and easy evaluation in real design projects. The sample buildings represent typical architectural styles and building technologies between 1887 and 2013 in Gothenburg and include eight residential buildings, two office buildings, two schools, two student apartment buildings, and two hospitals. Although the simulated DF P is 1.4% on average, i.e., above the required 1%, large variations have been found between the studied 1200 rooms. The empirical data generally support the findings from the numerical simulations, but also bring unique insights in the residences’ preferences for rooms with good daylight. The most remarkable result is related to kitchens, typically the spaces with the lowest DF values, based on simulations, while the residents wish them to be the spaces with the most daylight. Finally, the work introduces a new DF metric, denoted DF W , which allows daylighting design in early stages when only limited data on the building shape and windows’ arrangement are available.

Suggested Citation

  • Sara Eriksson & Lovisa Waldenström & Max Tillberg & Magnus Österbring & Angela Sasic Kalagasidis, 2019. "Numerical Simulations and Empirical Data for the Evaluation of Daylight Factors in Existing Buildings in Sweden," Energies, MDPI, vol. 12(11), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2200-:d:238508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Xu & Su, Yuehong, 2015. "Daylight availability assessment and its potential energy saving estimation –A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 494-503.
    2. Francesco Nocera & Alessandro Lo Faro & Vincenzo Costanzo & Chiara Raciti, 2018. "Daylight Performance of Classrooms in a Mediterranean School Heritage Building," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    3. Li, Danny H.W. & Wong, S.L., 2007. "Daylighting and energy implications due to shading effects from nearby buildings," Applied Energy, Elsevier, vol. 84(12), pages 1199-1209, December.
    4. Mata, Érika & Sasic Kalagasidis, Angela & Johnsson, Filip, 2013. "Energy usage and technical potential for energy saving measures in the Swedish residential building stock," Energy Policy, Elsevier, vol. 55(C), pages 404-414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    2. Aniela Kaminska, 2020. "Impact of Building Orientation on Daylight Availability and Energy Savings Potential in an Academic Classroom," Energies, MDPI, vol. 13(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2016. "Primary energy implications of different design strategies for an apartment building," Energy, Elsevier, vol. 104(C), pages 132-148.
    2. Shoaib Azizi & Gireesh Nair & Thomas Olofsson, 2020. "Adoption of Energy Efficiency Measures in Renovation of Single-Family Houses: A Comparative Approach," Energies, MDPI, vol. 13(22), pages 1-16, November.
    3. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    4. Mata, Érika & Kalagasidis, Angela Sasic & Johnsson, Filip, 2018. "Contributions of building retrofitting in five member states to EU targets for energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 759-774.
    5. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    6. Ramos, Greici & Ghisi, Enedir, 2010. "Analysis of daylight calculated using the EnergyPlus programme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1948-1958, September.
    7. Aris Tsangrassoulis & Lambros Doulos & Angelos Mylonas, 2021. "Simulating the Impact of Daytime Calibration in the Behavior of a Closed Loop Proportional Lighting Control System," Energies, MDPI, vol. 14(21), pages 1-22, October.
    8. Karim Mohamed Ragab & Mehmet Fatih Orhan & Kenan Saka & Yousef Zurigat, 2022. "A Study and Assessment of the Status of Energy Efficiency and Conservation at School Buildings," Sustainability, MDPI, vol. 14(17), pages 1-31, August.
    9. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    10. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Nataša Šprah & Mitja Košir, 2019. "Daylight Provision Requirements According to EN 17037 as a Restriction for Sustainable Urban Planning of Residential Developments," Sustainability, MDPI, vol. 12(1), pages 1-22, December.
    12. Lidberg, T. & Gustafsson, M. & Myhren, J.A. & Olofsson, T. & Ödlund (former Trygg), L., 2018. "Environmental impact of energy refurbishment of buildings within different district heating systems," Applied Energy, Elsevier, vol. 227(C), pages 231-238.
    13. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    14. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    15. Jie Li & Qichao Ban & Xueming (Jimmy) Chen & Jiawei Yao, 2019. "Glazing Sizing in Large Atrium Buildings: A Perspective of Balancing Daylight Quantity and Visual Comfort," Energies, MDPI, vol. 12(4), pages 1-14, February.
    16. Mangkuto, R.A. & Wang, S. & Meerbeek, B.W. & Aries, M.B.C. & van Loenen, E.J., 2014. "Lighting performance and electrical energy consumption of a virtual window prototype," Applied Energy, Elsevier, vol. 135(C), pages 261-273.
    17. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    18. Przemyslaw Tabaka & Justyna Wtorkiewicz, 2022. "Analysis of the Spectral Sensitivity of Luxmeters and Light Sensors of Smartphones in Terms of Their Influence on the Results of Illuminance Measurements—Example Cases," Energies, MDPI, vol. 15(16), pages 1-21, August.
    19. Guo, Fei & Kurdgelashvili, Lado & Bengtsson, Magnus & Akenji, Lewis, 2016. "Analysis of achievable residential energy-saving potential and its implications for effective policy interventions: A study of Xiamen city in southern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 507-520.
    20. Liu, Xuan & Yang, Dujuan & Arentze, Theo & Wielders, Tom, 2023. "The willingness of social housing tenants to participate in natural gas-free heating systems project: Insights from a stated choice experiment in the Netherlands," Applied Energy, Elsevier, vol. 350(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2200-:d:238508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.