IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10625-d898097.html
   My bibliography  Save this article

A Study and Assessment of the Status of Energy Efficiency and Conservation at School Buildings

Author

Listed:
  • Karim Mohamed Ragab

    (Department of Mechanical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates)

  • Mehmet Fatih Orhan

    (Department of Mechanical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates)

  • Kenan Saka

    (Vocational School of Yenişehir Ibrahim Orhan, Bursa Uludağ University, Bursa 16900, Turkey)

  • Yousef Zurigat

    (Department of Mechanical Engineering, University of Jordan, Amman 11492, Jordan)

Abstract

The building sector consumes a significant portion of global energy use. In this regard, this work was undertaken to study the status of energy efficiency and conservation at a large school building in the northern part of United Arab Emirates (UAE). The annual electrical consumption at the school was analyzed and an awareness survey among the students and teachers was conducted to measure the level of awareness as well as to assess the current energy consumption practices. In order to identify energy saving opportunities, an energy audit was carried out wherein the school energy consuming systems, particularly the lighting and air-conditioning systems, were assessed. Furthermore, thermography scanning of the school building envelope was conducted to examine the building insulation and identify air leakage locations. The building electricity supply and distribution systems were assessed using power analyzer and thermography devices. The energy conservation measures identified include removing the extra lighting, installing motion sensors in classrooms and labs, as well as integrating a Networked Optimization Software with the current HVAC (heating, ventilating and air conditioning) system. The methodology consists of seven fundamental steps: (1) case study data collection (analysis of buildings and utility data); (2) survey of real operation conditions; (3) understanding of building behavior; (4) analysis of energy conservation measures; (5) estimation of energy-saving potential; (6) economic assessment; and (7) proposing Energy Conservation Measures (ECMs). In this regard, the school energy consuming systems (lighting, building envelope, and air conditioning (AC)) were examined to identify possible ways to reduce the school energy consumption. The results indicate that the cost of installing motion sensors in classrooms, and labs is approximately AED 20,000 (United Arab Emirates Dirham), which yields an annual energy saving of AED 93,691. Furthermore, with all energy saving measures, a total annual saving of AED 364,000 is anticipated, which is approximately 16% of the annual electricity bill.

Suggested Citation

  • Karim Mohamed Ragab & Mehmet Fatih Orhan & Kenan Saka & Yousef Zurigat, 2022. "A Study and Assessment of the Status of Energy Efficiency and Conservation at School Buildings," Sustainability, MDPI, vol. 14(17), pages 1-31, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10625-:d:898097
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Nocera & Alessandro Lo Faro & Vincenzo Costanzo & Chiara Raciti, 2018. "Daylight Performance of Classrooms in a Mediterranean School Heritage Building," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    2. Sergey S. Neustroev & Anna A. Arinushkina, 2019. "Energy Efficiency and Energy Saving in Public Schools: Federal Policy and Regional Perspectives from Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 535-541.
    3. Paolo Maria Congedo & Delia D’Agostino & Cristina Baglivo & Giuliano Tornese & Ilaria Zacà, 2016. "Efficient Solutions and Cost-Optimal Analysis for Existing School Buildings," Energies, MDPI, vol. 9(10), pages 1-24, October.
    4. Jitka Mohelníková & Miloslav Novotný & Pavla Mocová, 2020. "Evaluation of School Building Energy Performance and Classroom Indoor Environment," Energies, MDPI, vol. 13(10), pages 1-17, May.
    5. Zyadin, Anas & Puhakka, Antero & Halder, Pradipta & Ahponen, Pirkkoliisa & Pelkonen, Paavo, 2014. "The relative importance of home, school, and traditional mass media sources in elevating youth energy awareness," Applied Energy, Elsevier, vol. 114(C), pages 409-416.
    6. Maulud, A.L. & Saidi, H., 2012. "The Malaysian Fifth Fuel Policy: Re-strategising the Malaysian Renewable Energy Initiatives," Energy Policy, Elsevier, vol. 48(C), pages 88-92.
    7. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2021. "Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building," Energies, MDPI, vol. 14(7), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunho Kim & Yunha Park & Hyuncheol Seo & Jungha Hwang, 2023. "Load Prediction Algorithm Applied with Indoor Environment Sensing in University Buildings," Energies, MDPI, vol. 16(2), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    2. Ainur Tukhtamisheva & Dinar Adilova & Karolis Banionis & Aurelija Levinskytė & Raimondas Bliūdžius, 2020. "Optimization of the Thermal Insulation Level of Residential Buildings in the Almaty Region of Kazakhstan," Energies, MDPI, vol. 13(18), pages 1-16, September.
    3. Chul-Ho Kim & Seung-Eon Lee & Kang-Soo Kim, 2018. "Analysis of Energy Saving Potential in High-Performance Building Technologies under Korean Climatic Conditions," Energies, MDPI, vol. 11(4), pages 1-34, April.
    4. Sara Eriksson & Lovisa Waldenström & Max Tillberg & Magnus Österbring & Angela Sasic Kalagasidis, 2019. "Numerical Simulations and Empirical Data for the Evaluation of Daylight Factors in Existing Buildings in Sweden," Energies, MDPI, vol. 12(11), pages 1-24, June.
    5. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    6. Buyak, Nadia & Deshko, Valeriy & Bilous, Inna & Pavlenko, Anatoliy & Sapunov, Anatoliy & Biriukov, Dmytro, 2023. "Dynamic interdependence of comfortable thermal conditions and energy efficiency increase in a nursery school building for heating and cooling period," Energy, Elsevier, vol. 283(C).
    7. Lim, Xin-Le & Lam, Wei-Haur, 2014. "Public Acceptance of Marine Renewable Energy in Malaysia," Energy Policy, Elsevier, vol. 65(C), pages 16-26.
    8. Przemyslaw Tabaka & Justyna Wtorkiewicz, 2022. "Analysis of the Spectral Sensitivity of Luxmeters and Light Sensors of Smartphones in Terms of Their Influence on the Results of Illuminance Measurements—Example Cases," Energies, MDPI, vol. 15(16), pages 1-21, August.
    9. Silvia Amato, 2016. "East Asia Industrial Conversion Activity: Outlook at Post-Disaster Crisis Assessments with Technology Integration and Competitive Assimilation Modes," China Economic Policy Review (CEPR), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-44, June.
    10. Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
    11. Cristina Baglivo & Marina Bonomolo & Paolo Maria Congedo, 2019. "Modeling of Light Pipes for the Optimal Disposition in Buildings," Energies, MDPI, vol. 12(22), pages 1-28, November.
    12. Lean, Hooi Hooi & Smyth, Russell, 2014. "Are shocks to disaggregated energy consumption in Malaysia permanent or temporary? Evidence from LM unit root tests with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 319-328.
    13. Chankook Park & Minkyu Kim, 2021. "A Study on the Characteristics of Academic Topics Related to Renewable Energy Using the Structural Topic Modeling and the Weak Signal Concept," Energies, MDPI, vol. 14(5), pages 1-24, March.
    14. Ali, Ghaffar & Yan, Ningyu & Hussain, Jafar & Xu, Lilai & Huang, Yunfeng & Xu, Su & Cui, Shenghui, 2019. "Quantitative assessment of energy conservation and renewable energy awareness among variant urban communities of Xiamen, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 230-238.
    15. Sangmu Bae & Yujin Nam & Joon-Ho Choi, 2020. "Comparative Analysis of System Performance and Thermal Comfort for an Integrated System with PVT and GSHP Considering Two Load Systems: Convective Heating and Radiant Floor Heating," Energies, MDPI, vol. 13(20), pages 1-19, October.
    16. Kardooni, Roozbeh & Yusoff, Sumiani Binti & Kari, Fatimah Binti, 2016. "Renewable energy technology acceptance in Peninsular Malaysia," Energy Policy, Elsevier, vol. 88(C), pages 1-10.
    17. Delia D’Agostino & Ilaria Zacà & Cristina Baglivo & Paolo Maria Congedo, 2017. "Economic and Thermal Evaluation of Different Uses of an Existing Structure in a Warm Climate," Energies, MDPI, vol. 10(5), pages 1-29, May.
    18. Muhammad Asyraf Azni & Rasyikah Md Khalid & Umi Azmah Hasran & Siti Kartom Kamarudin, 2023. "Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    19. Witold Żołna & Przemysław Jura & Marian Banaś & Krzysztof Szczotka, 2023. "The Efficiency Improvement of the Device Based on the Example of a High Building Facade Washer in the Area of Industry 4.0," Energies, MDPI, vol. 16(10), pages 1-26, May.
    20. Jaewook Lee & Mohamed Boubekri & Feng Liang, 2019. "Impact of Building Design Parameters on Daylighting Metrics Using an Analysis, Prediction, and Optimization Approach Based on Statistical Learning Technique," Sustainability, MDPI, vol. 11(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10625-:d:898097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.