IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3723-d579359.html
   My bibliography  Save this article

Effect of Integrating Metal Wire Mesh with Spray Injection for Liquid Piston Gas Compression

Author

Listed:
  • Barah Ahn

    (Department of Mechanical Engineering, Baylor University, Waco, TX 76798, USA)

  • Vikram C. Patil

    (XALT Energy, Auburn Hills, MI 48326, USA)

  • Paul I. Ro

    (Department of Mechanical Engineering, Baylor University, Waco, TX 76798, USA)

Abstract

Heat transfer enhancement techniques used in liquid piston gas compression can contribute to improving the efficiency of compressed air energy storage systems by achieving a near-isothermal compression process. This work examines the effectiveness of a simultaneous use of two proven heat transfer enhancement techniques, metal wire mesh inserts and spray injection methods, in liquid piston gas compression. By varying the dimension of the inserts and the pressure of the spray, a comparative study was performed to explore the plausibility of additional improvement. The addition of an insert can help abating the temperature rise when the insert does not take much space or when the spray flowrate is low. At higher pressure, however, the addition of spacious inserts can lead to less efficient temperature abatement. This is because inserts can distract the free-fall of droplets and hinder their speed. In order to analytically account for the compromised cooling effects of droplets, Reynolds number, Nusselt number, and heat transfer coefficients of droplets are estimated under the test conditions. Reynolds number of a free-falling droplet can be more than 1000 times that of a stationary droplet, which results in 3.95 to 4.22 times differences in heat transfer coefficients.

Suggested Citation

  • Barah Ahn & Vikram C. Patil & Paul I. Ro, 2021. "Effect of Integrating Metal Wire Mesh with Spray Injection for Liquid Piston Gas Compression," Energies, MDPI, vol. 14(13), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3723-:d:579359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chakraborty, Arindam, 2011. "Advancements in power electronics and drives in interface with growing renewable energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1816-1827, May.
    2. Wieberdink, Jacob & Li, Perry Y. & Simon, Terrence W. & Van de Ven, James D., 2018. "Effects of porous media insert on the efficiency and power density of a high pressure (210 bar) liquid piston air compressor/expander – An experimental study," Applied Energy, Elsevier, vol. 212(C), pages 1025-1037.
    3. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    4. Teng Ren & Weiqing Xu & Maolin Cai & Xiaoshuang Wang & Minghan Li, 2019. "Experiments on Air Compression with an Isothermal Piston for Energy Storage," Energies, MDPI, vol. 12(19), pages 1-13, September.
    5. Joseph E. Aldy, 2017. "Policy surveillance in the G-20 fossil fuel subsidies agreement: lessons for climate policy," Climatic Change, Springer, vol. 144(1), pages 97-110, September.
    6. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    7. Saadat, Mohsen & Shirazi, Farzad A. & Li, Perry Y., 2015. "Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines," Applied Energy, Elsevier, vol. 137(C), pages 603-616.
    8. Qin, Chao & Loth, Eric, 2014. "Liquid piston compression efficiency with droplet heat transfer," Applied Energy, Elsevier, vol. 114(C), pages 539-550.
    9. Patil, Vikram C. & Acharya, Pinaki & Ro, Paul I., 2020. "Experimental investigation of water spray injection in liquid piston for near-isothermal compression," Applied Energy, Elsevier, vol. 259(C).
    10. Yan, Bo & Wieberdink, Jacob & Shirazi, Farzad & Li, Perry Y. & Simon, Terrence W. & Van de Ven, James D., 2015. "Experimental study of heat transfer enhancement in a liquid piston compressor/expander using porous media inserts," Applied Energy, Elsevier, vol. 154(C), pages 40-50.
    11. Cavallo, Alfred, 2007. "Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)," Energy, Elsevier, vol. 32(2), pages 120-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barah Ahn & Paul I. Ro, 2023. "Experimental Investigation of Impacts of Initial Pressure Levels on Compression Efficiency and Dissolution in Liquid Piston Gas Compression," Energies, MDPI, vol. 16(4), pages 1-28, February.
    2. Gouda, El Mehdi & Neu, Thibault & Benaouicha, Mustapha & Fan, Yilin & Subrenat, Albert & Luo, Lingai, 2023. "Experimental and numerical investigation on the flow and heat transfer behaviors during a compression–cooling–expansion cycle using a liquid piston for compressed air energy storage," Energy, Elsevier, vol. 277(C).
    3. Olusola Fajinmi & Josiah L. Munda & Yskandar Hamam & Olawale Popoola, 2023. "Compressed Air Energy Storage as a Battery Energy Storage System for Various Application Domains: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barah Ahn & Paul I. Ro, 2023. "Experimental Investigation of Impacts of Initial Pressure Levels on Compression Efficiency and Dissolution in Liquid Piston Gas Compression," Energies, MDPI, vol. 16(4), pages 1-28, February.
    2. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    3. Hu, Shiwei & Zhang, Xinjing & Xu, Weiqing & Cai, Maolin & Xu, Yujie & Chen, Haisheng, 2024. "Experimental study of tube-array-based liquid piston air compressor for near-isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 373(C).
    4. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    5. Wieberdink, Jacob & Li, Perry Y. & Simon, Terrence W. & Van de Ven, James D., 2018. "Effects of porous media insert on the efficiency and power density of a high pressure (210 bar) liquid piston air compressor/expander – An experimental study," Applied Energy, Elsevier, vol. 212(C), pages 1025-1037.
    6. Gao, Ziyu & Zhang, Xinjing & Li, Xiaoyu & Xu, Yujie & Chen, Haisheng, 2023. "Thermodynamic analysis of isothermal compressed air energy storage system with droplets injection," Energy, Elsevier, vol. 284(C).
    7. Patil, Vikram C. & Acharya, Pinaki & Ro, Paul I., 2020. "Experimental investigation of water spray injection in liquid piston for near-isothermal compression," Applied Energy, Elsevier, vol. 259(C).
    8. Olusola Fajinmi & Josiah L. Munda & Yskandar Hamam & Olawale Popoola, 2023. "Compressed Air Energy Storage as a Battery Energy Storage System for Various Application Domains: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.
    9. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    10. Gouda, El Mehdi & Neu, Thibault & Benaouicha, Mustapha & Fan, Yilin & Subrenat, Albert & Luo, Lingai, 2023. "Experimental and numerical investigation on the flow and heat transfer behaviors during a compression–cooling–expansion cycle using a liquid piston for compressed air energy storage," Energy, Elsevier, vol. 277(C).
    11. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    12. Zhang, Yufei & Jin, Peng & Wang, Haiyang & Cai, Xuchao & Ge, Gangqiang & Chen, Hao & Wang, Huanran & Li, Ruixiong, 2024. "Dimensionless thermal performance analysis of a closed isothermal compressed air energy storage system with spray-enhanced heat transfer," Energy, Elsevier, vol. 307(C).
    13. Zhang, Xinjing & Xu, Yujie & Zhou, Xuezhi & Zhang, Yi & Li, Wen & Zuo, Zhitao & Guo, Huan & Huang, Ye & Chen, Haisheng, 2018. "A near-isothermal expander for isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 225(C), pages 955-964.
    14. Bennett, Jeffrey A. & Fitts, Jeffrey P. & Clarens, Andres F., 2022. "Compressed air energy storage capacity of offshore saline aquifers using isothermal cycling," Applied Energy, Elsevier, vol. 325(C).
    15. Qin, Chao & Innes-Wimsatt, Elijah & Loth, Eric, 2016. "Hydraulic-electric hybrid wind turbines: Tower mass saving and energy storage capacity," Renewable Energy, Elsevier, vol. 99(C), pages 69-79.
    16. Teng Ren & Weiqing Xu & Maolin Cai & Xiaoshuang Wang & Minghan Li, 2019. "Experiments on Air Compression with an Isothermal Piston for Energy Storage," Energies, MDPI, vol. 12(19), pages 1-13, September.
    17. Yan, Bo & Wieberdink, Jacob & Shirazi, Farzad & Li, Perry Y. & Simon, Terrence W. & Van de Ven, James D., 2015. "Experimental study of heat transfer enhancement in a liquid piston compressor/expander using porous media inserts," Applied Energy, Elsevier, vol. 154(C), pages 40-50.
    18. Qihui Yu & Xiaodong Li & Zhigang Wei & Guoxin Sun & Xin Tan, 2022. "Study on Performance of a Modified Two-Stage Piston Expander Based on Spray Heat Transfer," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    19. Tong, Shuiguang & Cheng, Zhewu & Cong, Feiyun & Tong, Zheming & Zhang, Yidong, 2018. "Developing a grid-connected power optimization strategy for the integration of wind power with low-temperature adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 125(C), pages 73-86.
    20. Zhao, Pan & Gao, Lin & Wang, Jiangfeng & Dai, Yiping, 2016. "Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines," Renewable Energy, Elsevier, vol. 85(C), pages 1164-1177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3723-:d:579359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.