IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3584-d575921.html
   My bibliography  Save this article

Design and Implementation a Single-Switch Step-Up DC-DC Converter Based on Cascaded Boost and Luo Converters

Author

Listed:
  • Hossein Gholizadeh

    (Faculty of Electrical Engineering, Shahid Beheshti University, Tehran 25529, Iran)

  • Reza Sharifi Shahrivar

    (Faculty of Electrical Engineering, Islamic Azad University, Tehran 25529, Iran)

  • Mir Reza Hashemi

    (Faculty of Electrical Engineering, Shahid Beheshti University, Tehran 25529, Iran)

  • Ebrahim Afjei

    (Faculty of Electrical Engineering, Shahid Beheshti University, Tehran 25529, Iran)

  • Saman A. Gorji

    (Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001, Australia
    Centre for Clean Energy Technologies and Practices, Queensland University of Technology, Brisbane 4001, Australia)

Abstract

We designed and implemented a single-switch step-up DC-DC converter based on cascaded boost and Luo converters. The proposed converter demonstrated a quadratic voltage gain and a high efficiency, which makes it suitable for renewable energy applications, where a high voltage gain ratio is desired without imposing a high number of bulky items or employing a high duty cycle of the active switches. This converter benefits from the continuity of the input current waveform, which equips the maximum utilisation of renewable energy sources. While a transformer-less high voltage-gain was achieved, the voltage and current stresses of the power switch and diodes were kept low in comparison with the existing quadratic DC-DC converters. We analysed the converter in both continuous and discontinuous conduction modes. A non-ideal model of components was considered for power loss and efficiency calculations and comparisons. Finally, the simulation results were extracted with PLECS and validated with experiments on a 120 W prototype.

Suggested Citation

  • Hossein Gholizadeh & Reza Sharifi Shahrivar & Mir Reza Hashemi & Ebrahim Afjei & Saman A. Gorji, 2021. "Design and Implementation a Single-Switch Step-Up DC-DC Converter Based on Cascaded Boost and Luo Converters," Energies, MDPI, vol. 14(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3584-:d:575921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reshma Gopi, R. & Sreejith, S., 2018. "Converter topologies in photovoltaic applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1-14.
    2. Taghvaee, M.H. & Radzi, M.A.M. & Moosavain, S.M. & Hizam, Hashim & Hamiruce Marhaban, M., 2013. "A current and future study on non-isolated DC–DC converters for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 216-227.
    3. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tohid Rahimi & Md Rabiul Islam & Hossein Gholizadeh & Saeed Mahdizadeh & Ebrahim Afjei, 2021. "Design and Implementation of a High Step-Up DC-DC Converter Based on the Conventional Boost and Buck-Boost Converters with High Value of the Efficiency Suitable for Renewable Application," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
    2. Furqan A. Abbas & Thealfaqar A. Abdul-Jabbar & Adel A. Obed & Anton Kersten & Manuel Kuder & Thomas Weyh, 2023. "A Comprehensive Review and Analytical Comparison of Non-Isolated DC-DC Converters for Fuel Cell Applications," Energies, MDPI, vol. 16(8), pages 1-34, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tohid Rahimi & Md Rabiul Islam & Hossein Gholizadeh & Saeed Mahdizadeh & Ebrahim Afjei, 2021. "Design and Implementation of a High Step-Up DC-DC Converter Based on the Conventional Boost and Buck-Boost Converters with High Value of the Efficiency Suitable for Renewable Application," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
    2. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    3. Hossein Gholizadeh & Saman A. Gorji & Ebrahim Afjei & Dezso Sera, 2021. "Design and Implementation of a New Cuk-Based Step-Up DC–DC Converter," Energies, MDPI, vol. 14(21), pages 1-18, October.
    4. Goudarzian, Alireza & Khosravi, Adel & Raeisi, Heidar Ali, 2020. "Analysis of a step-up dc/dc converter with capability of right-half plane zero cancellation," Renewable Energy, Elsevier, vol. 157(C), pages 1156-1170.
    5. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    6. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    7. Sivakumar, S. & Sathik, M. Jagabar & Manoj, P.S. & Sundararajan, G., 2016. "An assessment on performance of DC–DC converters for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1475-1485.
    8. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    9. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    10. Rehman, Zubair & Al-Bahadly, Ibrahim & Mukhopadhyay, Subhas, 2015. "Multiinput DC–DC converters in renewable energy applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 521-539.
    11. Muhannad Alaraj & Anirudh Dube & Ibrahim Alsaidan & Mohammad Rizwan & Majid Jamil, 2021. "Design and Development of a Proficient Converter for Solar Photovoltaic Based Sustainable Power Generating System," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    12. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    13. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    14. Md Ohirul Qays & Yonis Buswig & Md Liton Hossain & Ahmed Abu-Siada, 2020. "Active Charge Balancing Strategy Using the State of Charge Estimation Technique for a PV-Battery Hybrid System," Energies, MDPI, vol. 13(13), pages 1-16, July.
    15. Guohong Lai & Guoping Zhang & Shaowu Li, 2024. "An MPPT Control Strategy Based on Current Constraint Relationships for a Photovoltaic System with a Battery or Supercapacitor," Energies, MDPI, vol. 17(16), pages 1-31, August.
    16. Habib Kraiem & Aymen Flah & Naoui Mohamed & Mohamed H. B. Messaoud & Essam A. Al-Ammar & Ahmed Althobaiti & Abdullah Alhumaidi Alotaibi & Michał Jasiński & Vishnu Suresh & Zbigniew Leonowicz & Elżbiet, 2022. "Decreasing the Battery Recharge Time if Using a Fuzzy Based Power Management Loop for an Isolated Micro-Grid Farm," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    17. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    18. Julio López Seguel & Seleme I. Seleme & Lenin M. F. Morais, 2022. "Comparative Study of Buck-Boost, SEPIC, Cuk and Zeta DC-DC Converters Using Different MPPT Methods for Photovoltaic Applications," Energies, MDPI, vol. 15(21), pages 1-26, October.
    19. Sajid Sarwar & Muhammad Yaqoob Javed & Mujtaba Hussain Jaffery & Muhammad Saqib Ashraf & Muhammad Talha Naveed & Muhammad Annas Hafeez, 2022. "Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions," Energies, MDPI, vol. 15(13), pages 1-39, June.
    20. Ehsan Jamshidpour & Slavisa Jovanovic & Philippe Poure, 2020. "Equivalent Two Switches and Single Switch Buck/Buck-Boost Circuits for Solar Energy Harvesting Systems," Energies, MDPI, vol. 13(3), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3584-:d:575921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.