IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3493-d1125425.html
   My bibliography  Save this article

A Comprehensive Review and Analytical Comparison of Non-Isolated DC-DC Converters for Fuel Cell Applications

Author

Listed:
  • Furqan A. Abbas

    (Department of Electrical Power Engineering, Middle Technical University, Baghdad 10011, Iraq
    These authors contributed equally to this work.)

  • Thealfaqar A. Abdul-Jabbar

    (Department of Electrical Power Engineering, Middle Technical University, Baghdad 10011, Iraq
    These authors contributed equally to this work.)

  • Adel A. Obed

    (Department of Electrical Power Engineering, Middle Technical University, Baghdad 10011, Iraq)

  • Anton Kersten

    (Department of Electrical Engineering, Bundeswehr University Munich, 85577 Neubiberg, Germany)

  • Manuel Kuder

    (Department of Electrical Engineering, Bundeswehr University Munich, 85577 Neubiberg, Germany)

  • Thomas Weyh

    (Department of Electrical Engineering, Bundeswehr University Munich, 85577 Neubiberg, Germany)

Abstract

The use of renewable energy sources such as solar photovoltaic, wind, and fuel cells is becoming increasingly prevalent due to a combination of environmental concerns and technological advancements, as well as decreasing production costs. Power electronics DC-DC converters play a key role in various applications, including hybrid energy systems, hybrid vehicles, aerospace, satellite systems, and portable electronic devices. These converters are used to convert power from renewable sources to meet the demands of the load, improving the dynamic and steady-state performance of green generation systems. This study presents a comparison of the most commonly used non-isolated DC-DC converters for fuel cell applications. The important factors considered in the comparison include voltage gain ratio, voltage switch stress, voltage ripple, efficiency, cost, and ease of implementation. Based on the comparison results, the converters have been grouped according to voltage level applications, with low voltage applications being best served by converters such as DBC, DuBC, TLBC, 2-IBC, 1st M-IBC, PSOL, SEPIC, and 1st M-SEPIC owing to their lower cost, smaller size, and reduced switch stress. Medium voltage applications are best suited to converters such as TBC, 1st M-TLBC, 2nd M-TLBC, 4-IBC, 1st M-IBC, 2nd M-IBC, 1st M-PSOL, 2nd M-PSOL, 1st M-SEPIC, and 2nd M-SEPIC, which offer higher efficiency. Finally, high voltage applications are best served by converters such as TBC, 1st M-TBC, 2nd M-IBC, 3rd M-IBC, 3rd M-PSOL, 4th M-PSOL, 2nd M-SEPIC, 3rd M-SEPIC, and 4th M-SEPIC.

Suggested Citation

  • Furqan A. Abbas & Thealfaqar A. Abdul-Jabbar & Adel A. Obed & Anton Kersten & Manuel Kuder & Thomas Weyh, 2023. "A Comprehensive Review and Analytical Comparison of Non-Isolated DC-DC Converters for Fuel Cell Applications," Energies, MDPI, vol. 16(8), pages 1-34, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3493-:d:1125425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anton Kersten & Artem Rodionov & Manuel Kuder & Thomas Hammarström & Anton Lesnicar & Torbjörn Thiringer, 2021. "Review of Technical Design and Safety Requirements for Vehicle Chargers and Their Infrastructure According to National Swedish and Harmonized European Standards," Energies, MDPI, vol. 14(11), pages 1-17, June.
    2. Hossein Gholizadeh & Reza Sharifi Shahrivar & Mir Reza Hashemi & Ebrahim Afjei & Saman A. Gorji, 2021. "Design and Implementation a Single-Switch Step-Up DC-DC Converter Based on Cascaded Boost and Luo Converters," Energies, MDPI, vol. 14(12), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tohid Rahimi & Md Rabiul Islam & Hossein Gholizadeh & Saeed Mahdizadeh & Ebrahim Afjei, 2021. "Design and Implementation of a High Step-Up DC-DC Converter Based on the Conventional Boost and Buck-Boost Converters with High Value of the Efficiency Suitable for Renewable Application," Sustainability, MDPI, vol. 13(19), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3493-:d:1125425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.