Hydrogen Road Transport Analysis in the Energy System: A Case Study for Germany through 2050
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lahnaoui, Amin & Wulf, Christina & Heinrichs, Heidi & Dalmazzone, Didier, 2018. "Optimizing hydrogen transportation system for mobility by minimizing the cost of transportation via compressed gas truck in North Rhine-Westphalia," Applied Energy, Elsevier, vol. 223(C), pages 317-328.
- Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
- Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt1804p4vw, Institute of Transportation Studies, UC Davis.
- Pfeiffer, Alexander & Millar, Richard & Hepburn, Cameron & Beinhocker, Eric, 2016. "The ‘2°C capital stock’ for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy," Applied Energy, Elsevier, vol. 179(C), pages 1395-1408.
- Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
- Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt7p3500g2, Institute of Transportation Studies, UC Davis.
- Obara, Shin'ya, 2019. "Energy and exergy flows of a hydrogen supply chain with truck transportation of ammonia or methyl cyclohexane," Energy, Elsevier, vol. 174(C), pages 848-860.
- Singh, Sonal & Jain, Shikha & PS, Venkateswaran & Tiwari, Avanish K. & Nouni, Mansa R. & Pandey, Jitendra K. & Goel, Sanket, 2015. "Hydrogen: A sustainable fuel for future of the transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 623-633.
- Jean André & Stéphane Auray & Daniel de Wolf & Mohamed-Mahmoud Memmah & Antoine Simonnet, 2014. "Time development of new hydrogen transmission pipeline networks for France," Post-Print halshs-02396799, HAL.
- Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
- Martin Robinius & Alexander Otto & Konstantinos Syranidis & David S. Ryberg & Philipp Heuser & Lara Welder & Thomas Grube & Peter Markewitz & Vanessa Tietze & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 2: Modelling a Sector Coupling Scenario for Germany," Energies, MDPI, vol. 10(7), pages 1-23, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Matteo Genovese & David Blekhman & Michael Dray & Francesco Piraino & Petronilla Fragiacomo, 2023. "Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method," Energies, MDPI, vol. 16(15), pages 1-14, August.
- Khaligh, Vahid & Ghezelbash, Azam & Liu, Jay & Won, Wangyun & Koo, Junmo & Na, Jonggeol, 2024. "Multi-period hydrogen supply chain planning for advancing hydrogen transition roadmaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
- Antoni Żywczak & Łukasz Gondek & Joanna Czub & Piotr Janusz & Nivas Babu Selvaraj & Akito Takasaki, 2022. "Physical Properties of Ti 45 Zr 38 Fe 17 Alloy and Its Amorphous Hydride," Energies, MDPI, vol. 15(12), pages 1-8, June.
- Alessandro Guzzini & Giovanni Brunaccini & Davide Aloisio & Marco Pellegrini & Cesare Saccani & Francesco Sergi, 2023. "A New Geographic Information System (GIS) Tool for Hydrogen Value Chain Planning Optimization: Application to Italian Highways," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
- Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).
- Yilmaz, Hasan Ümitcan & Kimbrough, Steven O. & van Dinther, Clemens & Keles, Dogan, 2022. "Power-to-gas: Decarbonization of the European electricity system with synthetic methane," Applied Energy, Elsevier, vol. 323(C).
- Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2022. "Reprint of: Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 250(C).
- Tomasz Jałowiec & Dariusz Grala & Piotr Maśloch & Henryk Wojtaszek & Grzegorz Maśloch & Agnieszka Wójcik-Czerniawska, 2022. "Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany," Energies, MDPI, vol. 15(22), pages 1-25, November.
- Mukelabai, Mulako Dean & Wijayantha, Upul K.G. & Blanchard, Richard E., 2022. "Renewable hydrogen economy outlook in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Gupta, Ruchi & Guibentif, Thomas M.M. & Friedl, Markus & Parra, David & Patel, Martin Kumar, 2023. "Macroeconomic analysis of a new green hydrogen industry using Input-Output analysis: The case of Switzerland," Energy Policy, Elsevier, vol. 183(C).
- Masih Mojarrad & Sana Farhoudian & Pavlo Mikheenko, 2022. "Superconductivity and Hydrogen Economy: A Roadmap to Synergy," Energies, MDPI, vol. 15(17), pages 1-12, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
- Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
- Seo, Seung-Kwon & Yun, Dong-Yeol & Lee, Chul-Jin, 2020. "Design and optimization of a hydrogen supply chain using a centralized storage model," Applied Energy, Elsevier, vol. 262(C).
- Wickham, David & Hawkes, Adam & Jalil-Vega, Francisca, 2022. "Hydrogen supply chain optimisation for the transport sector – Focus on hydrogen purity and purification requirements," Applied Energy, Elsevier, vol. 305(C).
- Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
- Amin Lahnaoui & Christina Wulf & Didier Dalmazzone, 2021. "Optimization of Hydrogen Cost and Transport Technology in France and Germany for Various Production and Demand Scenarios," Energies, MDPI, vol. 14(3), pages 1-21, January.
- Simonas Cerniauskas & Thomas Grube & Aaron Praktiknjo & Detlef Stolten & Martin Robinius, 2019. "Future Hydrogen Markets for Transportation and Industry: The Impact of CO 2 Taxes," Energies, MDPI, vol. 12(24), pages 1-26, December.
- Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Colbertaldo, P. & Cerniauskas, S. & Grube, T. & Robinius, M. & Stolten, D. & Campanari, S., 2020. "Clean mobility infrastructure and sector integration in long-term energy scenarios: The case of Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Ibrahim, Omar S. & Singlitico, Alessandro & Proskovics, Roberts & McDonagh, Shane & Desmond, Cian & Murphy, Jerry D., 2022. "Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
- Wassermann, Timo & Muehlenbrock, Henry & Kenkel, Philipp & Zondervan, Edwin, 2022. "Supply chain optimization for electricity-based jet fuel: The case study Germany," Applied Energy, Elsevier, vol. 307(C).
- Welder, Lara & Ryberg, D.Severin & Kotzur, Leander & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2018. "Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany," Energy, Elsevier, vol. 158(C), pages 1130-1149.
- Martin Khzouz & Evangelos I. Gkanas & Jia Shao & Farooq Sher & Dmytro Beherskyi & Ahmad El-Kharouf & Mansour Al Qubeissi, 2020. "Life Cycle Costing Analysis: Tools and Applications for Determining Hydrogen Production Cost for Fuel Cell Vehicle Technology," Energies, MDPI, vol. 13(15), pages 1-19, July.
- Lahnaoui, Amin & Wulf, Christina & Heinrichs, Heidi & Dalmazzone, Didier, 2018. "Optimizing hydrogen transportation system for mobility by minimizing the cost of transportation via compressed gas truck in North Rhine-Westphalia," Applied Energy, Elsevier, vol. 223(C), pages 317-328.
- Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wang, Danfeng & Wu, Qing, 2021. "Optimal design and techno-economic assessment of low-carbon hydrogen supply pathways for a refueling station located in Shanghai," Energy, Elsevier, vol. 237(C).
- Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
- Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan MacA., 2024. "Techno-economics of renewable hydrogen export: A case study for Australia-Japan," Applied Energy, Elsevier, vol. 374(C).
- Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021.
"Optimal supply chains and power sector benefits of green hydrogen,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
- Fabian Stockl & Wolf-Peter Schill & Alexander Zerrahn, 2020. "Optimal supply chains and power sector benefits of green hydrogen," Papers 2005.03464, arXiv.org, revised Jul 2021.
- Niermann, M. & Timmerberg, S. & Drünert, S. & Kaltschmitt, M., 2021. "Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
More about this item
Keywords
hydrogen transport; hydrogen infrastructure; truck routing; compressed gaseous hydrogen; liquid hydrogen; liquid organic hydrogen carriers;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3166-:d:564643. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.