IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v200y2024ics1364032124002594.html
   My bibliography  Save this article

Multi-period hydrogen supply chain planning for advancing hydrogen transition roadmaps

Author

Listed:
  • Khaligh, Vahid
  • Ghezelbash, Azam
  • Liu, Jay
  • Won, Wangyun
  • Koo, Junmo
  • Na, Jonggeol

Abstract

The global commitment to the Paris Agreement has triggered the development of national hydrogen strategies and roadmaps in numerous countries. For seamless execution of a hydrogen strategy, the model employed in roadmap optimization must consider intricate operational details. This study offers a comprehensive multi-period model for hydrogen supply chain (HSC) expansion planning, spanning production to distribution. The model optimizes facility timing, location, type, and capacity while considering efficient operational strategies. Hydrogen, sourced diversely, anchors the supply chain, supported by precise calculations for road-based transport and pipelines. Storage facilities adapt to supply sources and transportation methods, addressing supply-demand fluctuations and transport interruptions. Hydrogen refueling stations (HRS) are optimized for efficient urban distribution. Analyzing South Korea's HSC in this model reveals a shift towards green hydrogen in later stages, initially relying on refineries and imports. Investments transition from pipelines to liquid (LH2) and gaseous (GH2) hydrogen trucks in the early phases, eventually incorporating NH3 tanker trucks. The model predicts a decreasing levelized cost of hydrogen (LCOH), reaching $3.89/kg through HSC expansion planning. The model predicts a decreasing LCOH, reaching $3.89/kg through strategic HSC expansion. Transportation costs, playing a significant role in the final LCOH, are crucial for South Korea to achieve its target of 3000 KRW/kg. These results offer valuable insights for nations advancing hydrogen initiatives, providing a detailed cost breakdown model to guide policy planning and achieve HSC and LCOH objectives effectively. Also, the study showcases Korea's adeptness in transitioning to a hydrogen-based economy.

Suggested Citation

  • Khaligh, Vahid & Ghezelbash, Azam & Liu, Jay & Won, Wangyun & Koo, Junmo & Na, Jonggeol, 2024. "Multi-period hydrogen supply chain planning for advancing hydrogen transition roadmaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124002594
    DOI: 10.1016/j.rser.2024.114536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124002594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Reuß & Paris Dimos & Aline Léon & Thomas Grube & Martin Robinius & Detlef Stolten, 2021. "Hydrogen Road Transport Analysis in the Energy System: A Case Study for Germany through 2050," Energies, MDPI, vol. 14(11), pages 1-17, May.
    2. Azam Ghezelbash & Mitra Seyedzadeh & Vahid Khaligh & Jay Liu, 2023. "Impacts of Green Energy Expansion and Gas Import Reduction on South Korea’s Economic Growth: A System Dynamics Approach," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    3. Azam Ghezelbash & Vahid Khaligh & Seyed Hamed Fahimifard & J. Jay Liu, 2023. "A Comparative Perspective of the Effects of CO 2 and Non-CO 2 Greenhouse Gas Emissions on Global Solar, Wind, and Geothermal Energy Investment," Energies, MDPI, vol. 16(7), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Jałowiec & Dariusz Grala & Piotr Maśloch & Henryk Wojtaszek & Grzegorz Maśloch & Agnieszka Wójcik-Czerniawska, 2022. "Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany," Energies, MDPI, vol. 15(22), pages 1-25, November.
    2. Matteo Genovese & David Blekhman & Michael Dray & Francesco Piraino & Petronilla Fragiacomo, 2023. "Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method," Energies, MDPI, vol. 16(15), pages 1-14, August.
    3. Yilmaz, Hasan Ümitcan & Kimbrough, Steven O. & van Dinther, Clemens & Keles, Dogan, 2022. "Power-to-gas: Decarbonization of the European electricity system with synthetic methane," Applied Energy, Elsevier, vol. 323(C).
    4. Grzegorz Zimon & Dulal Chandra Pattak & Liton Chandra Voumik & Salma Akter & Funda Kaya & Robert Walasek & Konrad Kochański, 2023. "The Impact of Fossil Fuels, Renewable Energy, and Nuclear Energy on South Korea’s Environment Based on the STIRPAT Model: ARDL, FMOLS, and CCR Approaches," Energies, MDPI, vol. 16(17), pages 1-21, August.
    5. Antoni Żywczak & Łukasz Gondek & Joanna Czub & Piotr Janusz & Nivas Babu Selvaraj & Akito Takasaki, 2022. "Physical Properties of Ti 45 Zr 38 Fe 17 Alloy and Its Amorphous Hydride," Energies, MDPI, vol. 15(12), pages 1-8, June.
    6. Alessandro Guzzini & Giovanni Brunaccini & Davide Aloisio & Marco Pellegrini & Cesare Saccani & Francesco Sergi, 2023. "A New Geographic Information System (GIS) Tool for Hydrogen Value Chain Planning Optimization: Application to Italian Highways," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    7. Yao Li & Yugang He, 2024. "Unraveling Korea’s Energy Challenge: The Consequences of Carbon Dioxide Emissions and Energy Use on Economic Sustainability," Sustainability, MDPI, vol. 16(5), pages 1-29, March.
    8. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).
    9. Mukelabai, Mulako Dean & Wijayantha, Upul K.G. & Blanchard, Richard E., 2022. "Renewable hydrogen economy outlook in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Masih Mojarrad & Sana Farhoudian & Pavlo Mikheenko, 2022. "Superconductivity and Hydrogen Economy: A Roadmap to Synergy," Energies, MDPI, vol. 15(17), pages 1-12, August.
    11. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2022. "Reprint of: Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 250(C).
    12. Gupta, Ruchi & Guibentif, Thomas M.M. & Friedl, Markus & Parra, David & Patel, Martin Kumar, 2023. "Macroeconomic analysis of a new green hydrogen industry using Input-Output analysis: The case of Switzerland," Energy Policy, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124002594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.