IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3143-d563863.html
   My bibliography  Save this article

Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art

Author

Listed:
  • Aleksandra Ziemińska-Stolarska

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

  • Monika Pietrzak

    (Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland)

  • Ireneusz Zbiciński

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

Abstract

Photovoltaic systems represent a leading part of the market in the renewable energies sector. Contemporary technology offers possibilities to improve systems converting sun energy, especially for the efficiency of modules. The paper focuses on current concentrated photovoltaic (CPV) technologies, presenting data for solar cells and modules working under lab conditions as well as in a real environment. In this paper, we consider up-to-date solutions for two types of concentrating photovoltaic systems: high-concentration photovoltaics (HCPV) and low-concentration photovoltaics (LCPV). The current status of CPV solar modules was complemented by the preliminary results of new hybrid photovoltaic technology achieving records in efficiency. Compared to traditional Si-PV panels, CPV modules achieve greater conversion efficiency as a result of the concentrator optics applied. Specific CPV technologies were described in terms of efficiency, new approaches of a multijunction solar cell, a tracking system, and durability. The results of the analysis prove intensive development in the field of CPV modules and the potential of achieving record system efficiency. The paper also presents methods for the determination of the environmental impact of CPV during the entire life cycle by life cycle assessment (LCA) analysis and possible waste management scenarios. Environmental performance is generally assessed based on standard indicators, such as energy payback time, CO 2 footprint, or GHG emission.

Suggested Citation

  • Aleksandra Ziemińska-Stolarska & Monika Pietrzak & Ireneusz Zbiciński, 2021. "Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art," Energies, MDPI, vol. 14(11), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3143-:d:563863
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manxuan Xiao & Llewellyn Tang & Xingxing Zhang & Isaac Yu Fat Lun & Yanping Yuan, 2018. "A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems," Energies, MDPI, vol. 11(12), pages 1-39, December.
    2. Marina Monteiro Lunardi & Juan Pablo Alvarez-Gaitan & Jose I. Bilbao & Richard Corkish, 2018. "A Review of Recycling Processes for Photovoltaic Modules," Chapters, in: Beddiaf Zaidi (ed.), Solar Panels and Photovoltaic Materials, IntechOpen.
    3. Halasah, Suleiman A. & Pearlmutter, David & Feuermann, Daniel, 2013. "Field installation versus local integration of photovoltaic systems and their effect on energy evaluation metrics," Energy Policy, Elsevier, vol. 52(C), pages 462-471.
    4. Nishimura, A. & Hayashi, Y. & Tanaka, K. & Hirota, M. & Kato, S. & Ito, M. & Araki, K. & Hu, E.J., 2010. "Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system," Applied Energy, Elsevier, vol. 87(9), pages 2797-2807, September.
    5. Akella, A.K. & Saini, R.P. & Sharma, M.P., 2009. "Social, economical and environmental impacts of renewable energy systems," Renewable Energy, Elsevier, vol. 34(2), pages 390-396.
    6. Deng, Rong & Chang, Nathan L. & Ouyang, Zi & Chong, Chee Mun, 2019. "A techno-economic review of silicon photovoltaic module recycling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 532-550.
    7. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
    8. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    9. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    10. Fthenakis, Vasilis M., 2000. "End-of-life management and recycling of PV modules," Energy Policy, Elsevier, vol. 28(14), pages 1051-1058, November.
    11. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    12. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Lu, Yashun & Ji, Jie, 2018. "Life-cycle assessment of a low-concentration PV module for building south wall integration in China," Applied Energy, Elsevier, vol. 215(C), pages 174-185.
    13. Izabela Piasecka & Patrycja Bałdowska-Witos & Katarzyna Piotrowska & Andrzej Tomporowski, 2020. "Eco-Energetical Life Cycle Assessment of Materials and Components of Photovoltaic Power Plant," Energies, MDPI, vol. 13(6), pages 1-24, March.
    14. Kang, Sukmin & Yoo, Sungyeol & Lee, Jina & Boo, Bonghyun & Ryu, Hojin, 2012. "Experimental investigations for recycling of silicon and glass from waste photovoltaic modules," Renewable Energy, Elsevier, vol. 47(C), pages 152-159.
    15. Vincenzo Muteri & Maurizio Cellura & Domenico Curto & Vincenzo Franzitta & Sonia Longo & Marina Mistretta & Maria Laura Parisi, 2020. "Review on Life Cycle Assessment of Solar Photovoltaic Panels," Energies, MDPI, vol. 13(1), pages 1-38, January.
    16. Benhammane, Mousaab & Notton, Gilles & Pichenot, Grégoire & Voarino, Philippe & Ouvrard, David, 2021. "Overview of electrical power models for concentrated photovoltaic systems and development of a new operational model with easily accessible inputs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Chemisana, Daniel, 2011. "Building Integrated Concentrating Photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 603-611, January.
    18. Jérôme Payet & Titouan Greffe, 2019. "Life Cycle Assessment of New High Concentration Photovoltaic (HCPV) Modules and Multi-Junction Cells," Energies, MDPI, vol. 12(15), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominika Siwiec & Andrzej Pacana & Andrzej Gazda, 2023. "A New QFD-CE Method for Considering the Concept of Sustainable Development and Circular Economy," Energies, MDPI, vol. 16(5), pages 1-21, March.
    2. Iliana Papamichael & Irene Voukkali & Mejdi Jeguirim & Nikolaos Argirusis & Salah Jellali & Georgia Sourkouni & Christos Argirusis & Antonis A. Zorpas, 2022. "End-of-Life Management and Recycling on PV Solar Energy Production," Energies, MDPI, vol. 15(17), pages 1-5, September.
    3. Tianyi Chen & Yaning An & Chye Kiang Heng, 2022. "A Review of Building-Integrated Photovoltaics in Singapore: Status, Barriers, and Prospects," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    4. Ludwik Wicki & Robert Pietrzykowski & Dariusz Kusz, 2022. "Factors Determining the Development of Prosumer Photovoltaic Installations in Poland," Energies, MDPI, vol. 15(16), pages 1-19, August.
    5. Mladen Bošnjaković & Robert Santa & Zoran Crnac & Tomislav Bošnjaković, 2023. "Environmental Impact of PV Power Systems," Sustainability, MDPI, vol. 15(15), pages 1-26, August.
    6. Aleksandra Ziemińska-Stolarska & Monika Pietrzak & Ireneusz Zbiciński, 2023. "Effect of Recycling on the Environmental Impact of a High-Efficiency Photovoltaic Module Combining Space-Grade Solar Cells and Optical Micro-Tracking," Energies, MDPI, vol. 16(8), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sica, Daniela & Malandrino, Ornella & Supino, Stefania & Testa, Mario & Lucchetti, Maria Claudia, 2018. "Management of end-of-life photovoltaic panels as a step towards a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2934-2945.
    2. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
    3. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    4. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    6. Tammaro, Marco & Rimauro, Juri & Fiandra, Valeria & Salluzzo, Antonio, 2015. "Thermal treatment of waste photovoltaic module for recovery and recycling: Experimental assessment of the presence of metals in the gas emissions and in the ashes," Renewable Energy, Elsevier, vol. 81(C), pages 103-112.
    7. Zhu, Rui & Lau, Wing Sze & You, Linlin & Yan, Jinyue & Ratti, Carlo & Chen, Min & Wong, Man Sing & Qin, Zheng, 2024. "Multi-sourced data modelling of spatially heterogenous life-cycle carbon mitigation from installed rooftop photovoltaics: A case study in Singapore," Applied Energy, Elsevier, vol. 362(C).
    8. Ornella Malandrino & Daniela Sica & Mario Testa & Stefania Supino, 2017. "Policies and Measures for Sustainable Management of Solar Panel End-of-Life in Italy," Sustainability, MDPI, vol. 9(4), pages 1-15, March.
    9. Deng, Rong & Chang, Nathan L. & Ouyang, Zi & Chong, Chee Mun, 2019. "A techno-economic review of silicon photovoltaic module recycling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 532-550.
    10. Menoufi, Karim & Chemisana, Daniel & Rosell, Joan I., 2013. "Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme," Applied Energy, Elsevier, vol. 111(C), pages 505-514.
    11. B. T. Wittbrodt & J.M. Pearce, 2015. "Total U.S. cost evaluation of low-weight tension-based photovoltaic flat-roof mounted racking," Post-Print hal-02119670, HAL.
    12. Bany Mousa, Osama & Kara, Sami & Taylor, Robert A., 2019. "Comparative energy and greenhouse gas assessment of industrial rooftop-integrated PV and solar thermal collectors," Applied Energy, Elsevier, vol. 241(C), pages 113-123.
    13. Ansanelli, G. & Fiorentino, G. & Tammaro, M. & Zucaro, A., 2021. "A Life Cycle Assessment of a recovery process from End-of-Life Photovoltaic Panels," Applied Energy, Elsevier, vol. 290(C).
    14. Emmanuel Shittu & Maria Kolokotroni & Valentina Stojceska, 2019. "Environmental Impact of the High Concentrator Photovoltaic Thermal 2000x System," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    15. Elizabeth Markert & Ilke Celik & Defne Apul, 2020. "Private and Externality Costs and Benefits of Recycling Crystalline Silicon (c-Si) Photovoltaic Panels," Energies, MDPI, vol. 13(14), pages 1-13, July.
    16. Gemina Quest & Rosalie Arendt & Christian Klemm & Vanessa Bach & Janik Budde & Peter Vennemann & Matthias Finkbeiner, 2022. "Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany," Energies, MDPI, vol. 15(16), pages 1-21, August.
    17. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    18. Domínguez, Adriana & Geyer, Roland, 2019. "Photovoltaic waste assessment of major photovoltaic installations in the United States of America," Renewable Energy, Elsevier, vol. 133(C), pages 1188-1200.
    19. Edgar, Ross & Cochard, Steve & Stachurski, Zbigniew, 2015. "Double-layer orthogonal-offset photovoltaic platforms," Applied Energy, Elsevier, vol. 147(C), pages 478-485.
    20. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3143-:d:563863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.