IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1385-d333252.html
   My bibliography  Save this article

Eco-Energetical Life Cycle Assessment of Materials and Components of Photovoltaic Power Plant

Author

Listed:
  • Izabela Piasecka

    (Faculty of Mechanical Engineering, University of Science and Technology in Bydgoszcz, 85-796 Bydgoszcz, Poland)

  • Patrycja Bałdowska-Witos

    (Faculty of Mechanical Engineering, University of Science and Technology in Bydgoszcz, 85-796 Bydgoszcz, Poland)

  • Katarzyna Piotrowska

    (Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland)

  • Andrzej Tomporowski

    (Faculty of Mechanical Engineering, University of Science and Technology in Bydgoszcz, 85-796 Bydgoszcz, Poland)

Abstract

During the conversion of solar radiation into electricity, photovoltaic installations do not emit harmful compounds into the environment. However, the stage of production and post-use management of their elements requires large amounts of energy and materials. Therefore, this publication was intended to conduct an eco-energy life cycle analysis of photovoltaic power plant materials and components based on the LCA method. The subject of the study was a 1 MW photovoltaic power plant, located in Poland. Eco-indicator 99, CED and IPCC were used as calculation procedures. Among the analyzed elements of the power plant, the highest level of negative impact on the environment was characterized by the life cycle of photovoltaic panels stored at the landfill after exploitation (the highest demand for energy, materials and CO 2 emissions). Among the materials of the power plant distinguished by the highest harmful effect on health and the quality of the environment stands out: silver, nickel, copper, PA6, lead and cadmium. The use of recycling processes would reduce the negative impact on the environment in the context of the entire life cycle, for most materials and elements. Based on the results obtained, guidelines were proposed for the pro-environmental post-use management of materials and elements of photovoltaic power plants.

Suggested Citation

  • Izabela Piasecka & Patrycja Bałdowska-Witos & Katarzyna Piotrowska & Andrzej Tomporowski, 2020. "Eco-Energetical Life Cycle Assessment of Materials and Components of Photovoltaic Power Plant," Energies, MDPI, vol. 13(6), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1385-:d:333252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng Wang & Jing Wu & Changxin Liu & Gaoxiang Gu, 2017. "Integrated Assessment Models of Climate Change Economics," Springer Books, Springer, number 978-981-10-3945-4, October.
    2. Goe, Michele & Gaustad, Gabrielle, 2014. "Strengthening the case for recycling photovoltaics: An energy payback analysis," Applied Energy, Elsevier, vol. 120(C), pages 41-48.
    3. G. J. Treloar & P. E. D. Love & O. O. Faniran & U. Iyer-Raniga, 2000. "A hybrid life cycle assessment method for construction," Construction Management and Economics, Taylor & Francis Journals, vol. 18(1), pages 5-9.
    4. Almas Heshmati & Shahrouz Abolhosseini & Jörn Altmann, 2015. "The Development of Renewable Energy Sources and its Significance for the Environment," Springer Books, Springer, edition 127, number 978-981-287-462-7, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G.-Fivos Sargentis & Nikos D. Lagaros & Giuseppe Leonardo Cascella & Demetris Koutsoyiannis, 2022. "Threats in Water–Energy–Food–Land Nexus by the 2022 Military and Economic Conflict," Land, MDPI, vol. 11(9), pages 1-19, September.
    2. Aleksandra Ziemińska-Stolarska & Monika Pietrzak & Ireneusz Zbiciński, 2021. "Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art," Energies, MDPI, vol. 14(11), pages 1-20, May.
    3. Luca Ciacci & Fabrizio Passarini, 2020. "Life Cycle Assessment (LCA) of Environmental and Energy Systems," Energies, MDPI, vol. 13(22), pages 1-8, November.
    4. Daniel Tomporowski & Robert Kasner & Wojciech Franus & Krzysztof Doerffer, 2022. "Assessment of Environmental Loads in the Life Cycle of a Retail and Service Building," Energies, MDPI, vol. 15(9), pages 1-30, April.
    5. Patryk Leda & Adam Idzikowski & Izabela Piasecka & Patrycja Bałdowska-Witos & Tomasz Cierlicki & Marcin Zawada, 2023. "Management of Environmental Life Cycle Impact Assessment of a Photovoltaic Power Plant on the Atmosphere, Water, and Soil Environment," Energies, MDPI, vol. 16(10), pages 1-26, May.
    6. Preeti Kumari Sahu & J. N. Roy & Chandan Chakraborty & Senthilarasu Sundaram, 2021. "A New Model for Estimation of Energy Extraction from Bifacial Photovoltaic Modules," Energies, MDPI, vol. 14(16), pages 1-16, August.
    7. G.-Fivos Sargentis & Paraskevi Siamparina & Georgia-Konstantina Sakki & Andreas Efstratiadis & Michalis Chiotinis & Demetris Koutsoyiannis, 2021. "Agricultural Land or Photovoltaic Parks? The Water–Energy–Food Nexus and Land Development Perspectives in the Thessaly Plain, Greece," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    8. Ying Zhang & Xiaobin Dong & Xuechao Wang & Peng Zhang & Mengxue Liu & Yufang Zhang & Ruiming Xiao, 2023. "The Relationship between the Low-Carbon Industrial Model and Human Well-Being: A Case Study of the Electric Power Industry," Energies, MDPI, vol. 16(3), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    2. Domínguez, Adriana & Geyer, Roland, 2019. "Photovoltaic waste assessment of major photovoltaic installations in the United States of America," Renewable Energy, Elsevier, vol. 133(C), pages 1188-1200.
    3. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    5. Heshmati, Almas, 2015. "A Review of the Circular Economy and its Implementation," IZA Discussion Papers 9611, Institute of Labor Economics (IZA).
    6. Riikka Kyrö & Jukka Heinonen & Antti Säynäjoki & Seppo Junnila, 2012. "Assessing the Potential of Climate Change Mitigation Actions in Three Different City Types in Finland," Sustainability, MDPI, vol. 4(7), pages 1-15, July.
    7. Onifade, Temitope Tunbi, 2016. "Hybrid renewable energy support policy in the power sector: The contracts for difference and capacity market case study," Energy Policy, Elsevier, vol. 95(C), pages 390-401.
    8. Ristimäki, Miro & Säynäjoki, Antti & Heinonen, Jukka & Junnila, Seppo, 2013. "Combining life cycle costing and life cycle assessment for an analysis of a new residential district energy system design," Energy, Elsevier, vol. 63(C), pages 168-179.
    9. Nain, Preeti & Kumar, Arun, 2020. "Initial metal contents and leaching rate constants of metals leached from end-of-life solar photovoltaic waste: An integrative literature review and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Balazs Pager & Zsuzsanna Zsibókb, 2020. "Regionalizing National-Level Growth Projections in the Visegrad Countries – The Issue Of Ex-Post Rescaling," Romanian Journal of Regional Science, Romanian Regional Science Association, vol. 14(1), pages 1-24, JUNE.
    11. Nattaya Sangngamratsakul & Kuskana Kubaha & Siriluk Chiarakorn, 2024. "Embodied Energy Coefficient Quantification and Implementation for an Energy-Conservative House in Thailand," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
    12. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. John Quale & Matthew J. Eckelman & Kyle W. Williams & Greg Sloditskie & Julie B. Zimmerman, 2012. "Construction Matters: Comparing Environmental Impacts of Building Modular and Conventional Homes in the United States," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 243-253, April.
    14. Chen, Xiuzhi & Liu, Chang & van Oel, Pieter & Mergia Mekonnen, Mesfin & Thorp, Kelly R. & Yin, Tuo & Wang, Jinyan & Muhammad, Tahir & Li, Yunkai, 2022. "Water and carbon risks within hydropower development on national scale," Applied Energy, Elsevier, vol. 325(C).
    15. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    16. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    17. Wood, Richard & Lenzen, Manfred & Dey, Christopher & Lundie, Sven, 2006. "A comparative study of some environmental impacts of conventional and organic farming in Australia," Agricultural Systems, Elsevier, vol. 89(2-3), pages 324-348, September.
    18. Georgi N. Todorov & Andrey I. Vlasov & Elena E. Volkova & Marina A. Osintseva, 2020. "Sustainability in Local Power Supply Systems of Production Facilities Where There Is the Compensatory Use of Renewable Energy Sources," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 14-23.
    19. Eleftheriadis, Stathis & Mumovic, Dejan & Greening, Paul, 2017. "Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 811-825.
    20. Deng, Rong & Chang, Nathan L. & Ouyang, Zi & Chong, Chee Mun, 2019. "A techno-economic review of silicon photovoltaic module recycling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 532-550.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1385-:d:333252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.